
Force.com Workbook
Salesforce Platform Workshop, Summer ’16

 @salesforcedocs
Last updated: July 26, 2016

https://twitter.com/salesforcedocs

© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

About the Workbook . 1

Audience . 1
Version . 1
Supported Browsers . 2
Can I Use My Tablet or Phone? . 2
Sign Up for Developer Edition . 2
Optional: Install the Warehouse App . 2

Create an App and Database . 4

Create a Warehouse App . 4
Step 1: Build a Cloud App and Database . 4
Step 2: Try Out the App . 6
Step 3: Explore the App . 7

Access the App from a Mobile Device . 8
Step 1: Set Up Mobile Access . 8
Step 2: Try Out the Mobile App . 9
Step 3: Explore the Mobile App . 10

Add Fields to an Object . 12
Step 1: Add the Price Field to the Merchandise Object . 12
Step 2: Add the Quantity Field to the Merchandise Object . 13
Step 3: Try Out the App . 14

Create a New Object . 15
Step 1: Create the Invoice Object Using the Wizard . 15
Step 2: Add an Invoice Tab to the App . 17
Step 3: Reorder Tabs in the App . 18
Step 4: Add a Status Field to the Invoice Object . 18
Step 5: Try Out the App . 19

Relate Objects . 20
Step 1: Create the Line Item Object . 21
Step 2: Add a Quantity Field . 22
Step 3: Relate Line Items to Invoice . 23
Step 4: Look Up Merchandise Items . 23
Step 5: Try Out the App . 24
Step 6: View the Schema . 25
Summary . 25

Load Data Using the Custom Object Import Wizard . 26
Step 1: Create the Data File . 26
Step 2: Load the Data . 27
Step 3: Try Out the App . 28

Customize a User Interface . 29

Create Views of Data . 29
Step 1: View a List of Invoices . 29
Step 2: Create a New View . 30
Step 3: Try Out the App . 31

Modify a Page Layout . 32
Step 1: Open the Page Layout Editor . 33
Step 2: Understand a Page Layout . 33
Step 3: Rearrange Fields on a Page Layout . 35
Step 4: Add Fields to the Related List . 35
Step 5: Try Out the App . 36
Step 6: Edit a Mini Page Layout . 36

Customize a Layout for Mobile Access . 37
Step 1: Create a Page Layout for Mobile Users . 37
Step 2: Display Key Fields Using Compact Layouts . 39
Step 3: Add Mobile Cards to the Related Information Page . 40

Enable Social Collaboration . 41
Step 1: Examine the Merchandise Page Layout . 41
Step 2: Enable Collaboration on Invoices . 42
Step 3: Try Out the App . 43
Step 4: Enable Notifications for Mobile . 44

Add App Logic with Clicks, Not Code . 46

Automate a Field Update Using Workflow . 46
Step 1: Examine the Line Item Detail Page . 46
Step 2: Create a Unit Price Field . 47
Step 3: Automatically Populate the Unit Price Field . 47
Step 4: Update Total Inventory When an Order is Placed . 50
Step 5: Activate the Workflow Rule . 50
Step 6: Try Out the App . 51

Add a Formula Field . 51
Step 1: Calculate a Value for Each Line Item . 51
Step 2: Try Out the App . 52

Add a Roll-Up Summary Field . 53
Step 1: Calculate a Total With a Roll-Up Summary Field . 53
Step 2: Try Out the App . 54

Enforce a Business Rule . 54
Step 1: Understand the Business Rule . 54
Step 2: Create a Validation Rule . 55
Step 3: Try Out the App . 57
Step 4: Modify the Validation Rule . 57
Step 5: Try Out the New Rule . 58

Create an Approval Process . 58
Step 1: Create an Approval Process . 59

Contents

Step 2: Examine the Approval Process Detail Page . 60
Step 3: Modify Approval Process Actions . 61
Step 4: Activate the Approval Process . 61
Step 5: Try Out the App . 62
Step 6: Configure Approvals for Chatter and Salesforce1 . 63

Create a Flow . 63
Step 1: Add Flow Variables . 64
Step 2: Add a Form Screen . 65
Step 3: Add a Record Create Element . 68
Step 4: Add a Record Update Element . 69
Step 5: Add a Confirmation Screen . 71
Step 6: Add a Custom Button . 73
Step 7: Try Out the App . 75
Step 8: Add a Fault Screen . 77

Analyze Data with Reports and Dashboards . 79

Create a Report . 79
Step 1: Create a Simple Report . 79
Step 2: Get More Information Out of Your Report . 81
Step 3: Add Buckets to Your Report . 81
Step 4: Show Your Report Data as a Chart . 83
Step 5: Embed the Report Chart in a Record Page . 84

Create a Dashboard . 85
Step 1: Create a New Dashboard . 86
Step 2: Add a Pie Chart Component . 86
Step 3: Try Out the App . 87
Step 4: Access Dashboards from Your Mobile App . 88

Unleash Your Reports with the Salesforce Reports and Dashboards REST API 88
Step 1: Run a Report Synchronously . 90
Step 2: Run a Report Asynchronously . 90
Step 3: Filter Report Data . 91
Step 4: Find, Show, and Refresh Dashboards . 91

Enhance the Mobile Experience with Actions . 94

Quickly Create Records Using Global Actions . 94
Step 1: Create a Global Action . 94
Step 2: Customize the Global Layout . 95

Create Related Records with Object-specific Actions . 96
Step 1: Define an Object-Specific Action . 96
Step 2: Choose Fields and Predefine Field Values . 97
Step 3: Customize an Object-Specific Layout . 97

Secure Your System . 99

Create a Profile and Permission Set . 99

Contents

Step 1: Create a Profile . 100
Step 2: Edit a Profile . 100
Step 3: Create the Manager Permission Set . 101
Step 4: Create the Salesperson Permission Set . 101

Create New Users . 103
Step 1: Create New Users . 103
Step 2: Test Record Access . 104
Step 3: Assign Permission Sets to Users . 104
Step 4: Test Record Access . 105

Configure Org-Wide Defaults . 105
Step 1: Modify the OWD for Invoices . 106
Step 2: Test Record Access . 107

Share Records Using a Role Hierarchy . 107
Step 1: Create a Role Hierarchy . 107
Step 2: Assign Users to Roles . 108
Step 3: Test Record Access . 109

Code Custom App Logic . 110

Explore the Developer Console and Apex . 110
Step 1: Start the Developer Console . 110
Step 2: Execute Basic Apex Code . 111
Step 3: Review the Execution Log . 111

Create an Apex Class and Method . 112
Step 1: Create an Apex Class . 113
Step 2: Create a Blueprint Class Method . 113
Step 3: Get an Invoice and its Line Items . 114
Step 4: Create the Final Version of the Class Method . 114
Step 5: Manually Test the Apex Class Method . 116

Call an Apex Class Method Using a Button . 117
Step 1: Create a Custom Button . 117
Step 2: Add the Button to the Page Layout . 118
Step 3: Modify the Apex Class . 119
Step 4: Test the New Button . 120

Create a Database Trigger . 120
Step 1: Create a Database Trigger . 121
Step 2: Manually Test the Trigger . 121

Create Unit Tests . 122
Step 1: Create a Unit Test . 122
Step 2: Run Unit Tests . 124

Build a Custom User Interface with Visualforce . 125

Code a Custom User Interface . 125
Step 1: Enable Visualforce Development Mode . 125
Step 2: Create a Visualforce Page . 126

Contents

Step 3: Add a Stylesheet Static Resource . 127
Step 4: Add a Controller to the Page . 129
Step 5: Display the Inventory Count Sheet as a Visualforce Page 129
Step 6: Add Inline Editing Support . 131
Summary . 133

Contents

ABOUT THE WORKBOOK

This workbook shows you how to create a cloud app in a series of tutorials. While you can use the Salesforce platform to build virtually
any kind of app, most apps share certain characteristics, such as:

• A database to model the information in the app

• A user interface to expose data and functionality to those logged into your app

• Business logic and workflow to carry out particular tasks under certain conditions

In addition, apps developed on the Salesforce Platform automatically support:

• A public website and mobile apps to allow access to data and functionality

• A native social environment that allows you to interact with people or data

• Built-in security for protecting data and defining access across your organization

• Multiple APIs to integrate with external systems

• The ability to install or create packaged apps

The workbook tutorials are centered around building a very simple warehouse management system. Your warehouse contains computer
hardware and peripherals: laptops, desktops, tablets, monitors, that kind of thing. To keep track of how merchandise moves out of the
warehouse, you use an invoice. An invoice is a list of line items. Each line item has a particular piece of merchandise, and the number of
items ordered. The invoice rolls up all the prices and quantities for an invoice total. It’s a very simple data model, but just enough to
illustrate the basic concepts.

Development proceeds from the bottom up; that is, you first build an app and database model for keeping track of merchandise. You
continue by modifying the user interface, adding business logic, etc. Each of the tutorials builds on the previous tutorial to advance the
app’s development and simultaneously help you learn about the platform.

Audience

These tutorials are intended for developers new to the Salesforce platform and for Salesforce admins who want to delve more deeply
into app development.

Version

You should be able to successfully complete all procedures using the Summer ’14 version of Salesforce.

1

Supported Browsers

Microsoft Edge
Salesforce supports Microsoft Edge on Windows 10 for Salesforce Classic. Note these restrictions.

• The HTML solution editor in Microsoft Edge isn’t supported in Salesforce Knowledge.

• Microsoft Edge isn’t supported for the Developer Console.

• Microsoft Edge isn’t supported for Salesforce CRM Call Center built with CTI Toolkit version 4.0 or higher.

Can I Use My Tablet or Phone?

Most of the tutorials can be completed using tablet or phone, although screen size may be an issue with some tutorials, and a keyboard
is convenient for code. In addition, note the following.

• Tutorials that require moving data from a local file system to the cloud may not be possible depending on the capabilities of the
device. For example, if you try to upload a CSV file, your device might only allow you to browse for photos.

• Some tutorials require you to switch between different users, which is much easier if you have two different browsers open at the
same time. If your device is only capable of using one browser, you have to log in and out each time you switch users.

Sign Up for Developer Edition

This workbook is designed to be used with a Developer Edition organization, or DE org for short. DE orgs are multipurpose environments
with all of the features and permissions that allow you to develop, package, test, and install apps.

1. In your browser, go to http://sforce.co/YrZZJ3.

2. Fill in the fields about you and your company.

3. In the Email Address field, make sure to use a public address you can easily check from a Web browser.

4. Type a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same as your
email address, and in fact, it’s usually better if they aren’t the same. Your username is your login and your identity on
developer.salesforce.com, so you’re often better served by choosing a username such as
firstname@lastname.com.

5. Read and then select the checkbox for the Master Subscription Agreement and then click Submit Registration.

6. In a moment you’ll receive an email with a login link. Click the link and change your password.

Optional: Install the Warehouse App

If you want to skip over the 100-level tutorials, you can install the Warehouse app as a package. A package is a bundle of components,
usually an app, that you can install in your org.

The packaged app option is useful for advanced developers or admins who already know their way around custom objects, fields,
relationships, basic UI, and app logic. However, if you’re an experienced developer new to the platform, it’s still a good idea to go through
the 100-level tutorials, especially for the mobile content.

To install the Warehouse app:

1. Click the installation URL link: https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Pj8s

2. If you aren’t logged in already, enter the username and password of your DE org.

2

Supported BrowsersAbout the Workbook

http://sforce.co/YrZZJ3
https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Pj8s

3. On the Package Installation Details page, click Continue.

4. Click Next, and on the Security Level page click Next.

5. Click Install.

6. Click Deploy Now and then Deploy.

7. Once the installation completes, you can select the Warehouse app from the app picker in the upper right corner.

8. To create data, click the Data tab.

9. Click Create Data.

Note: If you installed the package by mistake, or you want to delete it, from Setup, enter Installed Packages in the
Quick Find box, select Installed Packages, and then delete the package.

3

Optional: Install the Warehouse AppAbout the Workbook

CREATE AN APP AND DATABASE

Duration: 40–60 minutes

The Salesforce platform makes it easy to build custom apps and databases in the cloud. In this lesson, you learn how to build a basic
app with just a few clicks and then enhance the underlying database as you go along. You also learn how to validate data entry and
load data.

Create a Warehouse App

Level: Beginner; Duration: 5–10 minutes

Running apps in the cloud is great because there is no server to configure, no software to install, and no ongoing maintenance of your
infrastructure. This tutorial teaches you how to build a cloud app.

At the heart of this app is what you want to sell: merchandise. When you create an app, you automatically create a data object that keeps
track of all the elements of a particular merchandise item, such as its name, description, and price. On the Salesforce platform, these data
objects are called custom objects. If you’re familiar with databases, you can think of them as a table.

An object comes with standard fields and screens that allow you to list, view, and edit information about the object. But you can also
add your own fields to track or list just about anything you can think of. When you complete this tutorial, you’ll have a working app with
its own menu, a tab, and a custom object that tracks the name, description, and price of all your merchandise, as well as screens that
allow you to view and edit all of this information.

Step 1: Build a Cloud App and Database
You can create an app with just a few clicks. In this tutorial, you use the App Quick Start wizard to create an app that can help you manage
merchandise records in a warehouse.

1. Launch your browser and go to https://login.salesforce.com.

2. Enter your username (in the form of an email address) and password.

3. From the Force.com Setup page, click Add App in the Getting Started section. (If you’re starting from somewhere else, look in the
upper right corner, and click Setup.)

4. Fill in the form as follows:

• For the App, type Warehouse.

• For the Label, type Merchandise.

• For the Plural Label, type Merchandise.

4

https://login.salesforce.com

5. Click Create and you see right away some of the functionality that’s automatically added.

6. Click Go To My App to see your new app.

7. Click Start Tour and follow along for a quick overview of your app’s built-in user interface.

5

Step 1: Build a Cloud App and DatabaseCreate an App and Database

1. Force.com app menu—Shows the apps that are available to you. The app you just created is selected.

2. Tabs—Provide an easy way to find and organize objects and records. In the Merchandise tab, which is open, you can create, view,
and edit records. The other tabs are the standard feature tabs that are included with every app.

3. Create records—Click New to add records to your custom object. If you click this button now, you see only one data entry field in
the object, but you’ll create more later.

4. Force.com Quick Access menu—Quickly jump to relevant app customization features. The menu is available from any object list
view page and record detail page, but only for users with the “Customize Application” permission.

Tell Me More....
An app is composed of tabs, but the tabs don’t have to be related to each other. In fact, you can modify custom apps to group all of
your most frequently used tabs together in one place. For example, if you refer to the Accounts tab a lot, you can add that to the
Warehouse app. You can switch between apps you created, bought, or installed by selecting them from the menu.

Step 2: Try Out the App
Your app doesn’t do much yet, but you can start using it right away.

1. To try out your new app, click New to create a new Merchandise record.

6

Step 2: Try Out the AppCreate an App and Database

2. Add a new merchandise record for Laptop and click Save.

Step 3: Explore the App
Building a simple app is really fast! But don’t let this basic app fool you. Salesforce is a powerful platform that lets you build much more
sophisticated apps just as easily, and without code. Look closely around the screen to see all of the functionality included by default.

1. Every app has full-text search functionality for all text fields of an object and Chatter feeds.

2. Every object in Salesforce automatically has an attached "feed," called Chatter, that lets authorized app users socialize about and
collaborate on the object. Using Chatter, users can post updates in an object’s feed, comment on posts, and follow (subscribe to)

7

Step 3: Explore the AppCreate an App and Database

the feed to get pushed updates when they happen. For example, on a Merchandise record, one user might post a question about
the record, to which followers and other users can comment in reply.

3. Every DE org has a recycle bin that you can use to view and restore deleted records.

4. Every record in Salesforce has an "owner," which serves as the basis for a powerful security system that supports ownership-based
record sharing.

5. You can also manage activities related to a record from the Open Activities and Activity History related lists. Activities include tasks
to perform (making phone calls or sending email), calendar events, and requested meetings.

6. Every DE org has a Chat window that lets users interact with one another.

Access the App from a Mobile Device

Level: Beginner; Duration: 5–10 minutes

The simple app you created is already accessible as a mobile app. What? Truly! Most things you create in Salesforce are available via a
mobile device, giving your users full access to the information they need, no matter where they are. As you continue to develop in this
workbook, everything you do in the full site is reflected in the Salesforce1 mobile app.

For the warehouse use case, you can imagine workers in a warehouse typically need to make a physical check of the inventory. Rather
than lug around a laptop or transfer data by pen and paper, they can update on the go, right on the phone. This in turn might be useful
to a service technician on the road, who can instantly see which products are and aren’t available.

Step 1: Set Up Mobile Access
There are two ways to access Salesforce1: using a downloadable app or a mobile browser app.

1. First, you need to be able to access Salesforce1:

8

Access the App from a Mobile DeviceCreate an App and Database

To use the downloadable app, use your mobile device’s browser to go to www.salesforce.com/mobile, select the
appropriate platform, and download Salesforce1.

•

• To enable the mobile browser app, from Setup, enter “Salesforce1 Settings” in the Quick Find box, then select Salesforce1
Settings, and then Enable the Salesforce mobile browser app. Now, when you navigate to login.salesforce.com
from your mobile browser, Salesforce will recognize that you’re working from a mobile device and redirect you to the Salesforce1
mobile browser app.

2. Open Salesforce1 from your mobile device.

3. Enter your Salesforce credentials and tap Log in to Salesforce. You might be asked to verify your mobile device.

Tell Me More....
The downloadable mobile app is usually preferable because the following features aren’t supported in the mobile browser app.

• Today helps users plan for and manage their day by integrating calendar events from their mobile device with their Salesforce tasks,
contacts, and accounts.

• Push notifications alert users to important things when they aren’t using the app.

Step 2: Try Out the Mobile App
Start the mobile app and then look at how the Merchandise tab and its fields appear on a mobile device.

1. If you logged in using the downloadable app, you’re prompted to allow access to your data. Tap OK and continue.

2. On the first screen, you’re prompted to create your first post. Go ahead and tap the Post action in the action bar.

3. Enter some text like First post!, and then tap Share.

4. Tap in the left corner to open the navigation menu.

9

Step 2: Try Out the Mobile AppCreate an App and Database

http://www.salesforce.com/mobile
https://login.salesforce.com

5. Scroll down and tap More.

6. Tap Merchandise.

7. You can easily create a new piece of merchandise from the mobile device. Tap New.

8. Name it E–reader, and then tap Save.

Tell Me More....
You probably noticed that unlike the full Salesforce site, there isn’t a Home tab, and there doesn’t appear to be a Warehouse app.
Additionally, it took some effort to find the Merchandise tab. Why is that?

• Each tab is represented through a menu item in the Recent section of the Salesforce1 navigation menu. Since your app’s Merchandise
tab is new, it doesn’t appear on the Recent section yet until you start using it. After you’ve used the app a bit, the default tabs
(account, case, etc.) are replaced by the tabs you use most frequently.

• Salesforce apps, such as the Sales app or a your custom Warehouse app, don’t appear in Salesforce1, because the mobile app figures
out which records you look at most often. Rather than using the Force.com app menu to customize the tabs a user sees regularly,
the smart search items under the Recent section reorder based on the user’s history of recent objects.

• Don’t get the idea that the layout and navigation are entirely dynamic. You can customize the fields, actions, apps, and the navigation
of virtually the entire mobile app. You’ll get into that in later tutorials.

Step 3: Explore the Mobile App
You get a lot of functionality out of the box with Salesforce1. Take a moment to explore what’s there.

10

Step 3: Explore the Mobile AppCreate an App and Database

1. You should still be on the detail page for your new merchandise item. You can Edit, Clone, or Delete this record from its detail page.

2. Swipe left and you’ll see there’s a page for activities related to this item. This is the related information page.

3. Swipe right from the detail view and you’ll see there’s a blank page for the feed. There will be feed items here just as soon as you
make some changes.

4. Tap from the action bar at the bottom of the page, and then notice the list of icons that represent actions. This area is called
the action menu.

5. Try out an action by tapping Post.

6. Enter some text, such as Adding an e-reader to inventory and then tap Submit. You can automatically see the post
you created in the feed for the e-reader. Anyone who follows that item will get updates for it.

7. Tap , and this time tap New Task.

8. In Subject, type Enter a price, and for Due Date, tap the calendar and choose Today.

9. Tap Save.

10. From the detail page, swipe left and tap Open Activities, and you’ll see the task you created for yourself.

As you can see, you get the same functionality from the mobile app as you do in the full site—just the controls and navigation are
different.

Tell Me More....
• In the related information page you saw activities listed, and you might be wondering if you can add other related things. Yes! You

can add notes, attachments, Visualforce pages, and mobile cards to this page, which you’ll get to later.

• You saw a number of things you can do from the action bar, such as create a post, log a call, create a case, and so on. Of course you
can add and remove items from the tray and rearrange the order. This is all done in the page layout editor and is covered in later
lessons.

11

Step 3: Explore the Mobile AppCreate an App and Database

Add Fields to an Object

Level: Beginner; Duration: 5–10 minutes

In the first tutorial, you created a cloud app for managing merchandise in a warehouse. Behind the scenes, the platform created a
database for the app. This tutorial is the first of many that teach you how to continue building the database for your app. A database
organizes and manages data so that users can work with it efficiently. Traditional relational databases use tables to manage discrete,
possibly related, collections of information, organized further into datatype-specific columns (attributes) and rows (records). In Salesforce,
you refer to these as objects.

Your DE org comes with many standard objects (for example, Accounts, Products, Tasks) that support pre-built apps. Any new objects
you create are called custom objects. The Merchandise object is one such custom object. In this tutorial you add two new custom fields
(Price and Inventory) to supplement the standard fields the object already has (Name, Owner, CreatedBy,
LastModifiedBy).

The following image is a sneak peek of the data model you will be building, which allows you to view your objects, fields, and relationships.

Step 1: Add the Price Field to the Merchandise Object
A merchandise object should have fields that are used for tracking various information, such as how much individual units cost and how
many units are in stock. You can add custom fields to list or track just about anything you can think of.

1. From Setup, enter Objects in the Quick Find box, then select Objects.

2. Click Merchandise, scroll down to Custom Fields and Relationships, and click New.

3. The New Custom Field Wizard helps you quickly specify everything about a new field, including its name, labels to use for app pages,
help information, and visibility and security settings. Create the Price field as follows:

a. For Data Type, select Currency, and click Next.

b. Fill in the custom field details:

• Field Label: Price

• Length: 16

12

Add Fields to an ObjectCreate an App and Database

• Decimal Places: 2

• Select the Required checkbox

c. Leave the defaults for the remaining fields, and click Next.

d. Click Next again to accept the default field visibility and security settings.

e. Click Save & New to save the Price field and to return to the first step of the wizard.

Step 2: Add the Quantity Field to the Merchandise Object
You should already be in the New Custom Field wizard, so you can create the Quantity field in the same manner.

1. For Data Type, select Number and click Next.

2. Fill in the field details:

• Field Label: Quantity

• Select Required

3. Leave the defaults for the remaining fields, and click Next and Next again.

4. Click Save.

Take a look at this image to familiarize yourself with the Merchandise custom object.

1. Merchandise detail page—Shows you everything you need to know about your Merchandise custom object. Soon you’ll add
relationships, validation rules, and other neat features to this object.

13

Step 2: Add the Quantity Field to the Merchandise ObjectCreate an App and Database

2. API name—When you created the Merchandise object, you didn’t specify an API name, but one was generated for you. This name
is how the object is referenced programmatically. All custom objects end in __c, which differentiates them from standard objects.

3. Standard fields—Some fields are generated automatically; these are standard fields. For example, the Merchandise object has a
standard field for Owner, which means it automatically tracks who created each record.

4. Custom fields—Includes the fields you just created in this step. Like custom objects, custom fields have API names that end in
__c.

Tell Me More....
• The custom fields you created so far are nothing fancy, but you can do fancy! The platform has support for nearly any type of data

you want to track, such as currency, email, geolocation, URLs, date/time, and so on. Fields don't just contain static values, they can
be derived from formulas, or take their values from other objects.

• Why do you need an API name as well as the object and field label? A label is what the user sees, so it should be easy to read and
may contain spaces. The API name is used internally in code, and can’t contain spaces or illegal characters. For example, a field
labeled “Customer ph# :” would be named Customer_ph in the code (the system replaces spaces with underscores and removes
the # and : characters).

Step 3: Try Out the App
At this point you have a nice representation of your warehouse items—each has a name, price, and quantity. Time to create some more
inventory.

In the first tutorial, you created one Merchandise record with just a name (Laptop). In this tutorial you create a few more Merchandise
records that include the new Price and Quantity fields.

1. Click the Merchandise tab to leave Setup and return to the app.

2. Click Laptop in the Recent Merchandise listing.

3. Click Edit, and then specify the price and quantity as follows.

• Price: 500

• Quantity: 1000

Before you move on, take note how the platform automatically added the new Price and Quantity fields to your Laptop
record. When you add new fields through the wizards, the fields are added to your existing objects and exposed automatically on
your app’s user interface. Nice!

4. Click Save.

14

Step 3: Try Out the AppCreate an App and Database

5. If you created the E-reader item in the mobile tutorial, edit that item in a similar manner. If not, create a new Merchandise record
called E-reader with the following field values.

• Price: 100

• Quantity: 1500

6. Click Save & New and create a merchandise record for Desktop with these attributes.

• Price: 1000

• Quantity: 500

7. Click Save & New, and create a merchandise record for Tablet with these attributes.

• Price: 300

• Quantity: 5000

8. Click Save.

Tell Me More....
Take a close look at one of your merchandise records. Notice the Owner, CreatedBy, and LastModifiedBy fields. These are
standard fields which the platform automatically manages. Users have the ability to edit the Name standard field, along with the custom
fields Price and Quantity.

Also take a look at the Recent Items in the sidebar. This handy feature lets you view and navigate to the most recently changed records
in your database. The linked names in this sidebar come from each object’s Name field.

Create a New Object

Level: Beginner; Duration: 10–15 minutes

To make the Warehouse app more realistic, you need invoices to track orders going in and out of the warehouse. In this tutorial, you
learn how to extend the app further by:

• Creating another custom object, for keeping track of invoices. This object needs a Status field to track whether the invoice is
open, closed, or somewhere in-between.

• Adding a tab to the app so users can work with invoices.

• Reordering tabs for easier navigation.

Step 1: Create the Invoice Object Using the Wizard
An invoice is required to move inventory into or out of the warehouse. In this step, you create an invoice object that allows you to create
multiple invoice statements, each with a unique number, status, and description.

15

Create a New ObjectCreate an App and Database

1. From Setup, enter Objects in the Quick Find box, then select Objects.

2. Click New Custom Object.

3. Fill in the custom object definition.

• In the Label field, type Invoice.

• In the Plural Label field, type Invoices.

• Select Starts with vowel sound.

• In the Record Name field, type Invoice Number (replace Name with Number).

• For Data Type, select Auto Number.

• In the Display Format field, type INV–{0000}. (Note there are no spaces.)

• In the Starting Number field, type 0.

4. In the Optional Features section, select Allow Reports (in case you create reports later).

5. Select Launch New Custom Tab Wizard after saving this custom object.

16

Step 1: Create the Invoice Object Using the WizardCreate an App and Database

6. Click Save.

Tell Me More....
• The checkbox for vowel sounds ensures that the correct article is used: “a” or “an.”

• The Auto Number data type tells the platform to automatically assign a number to each new record that is created, beginning with
the starting number you specify. Because of the display format you chose, the invoice numbers will be INV-0000, INV-0001, and so
on.

• You could have started invoices at any number, but we started invoices at INV-0000 to remind you that the platform is zero-based.

Step 2: Add an Invoice Tab to the App
When you click the Merchandise tab, a list of Merchandise records appears. Similarly, you need to create a tab that displays Invoices.

1. If you don’t see Launch New Custom Tab Wizard, from Setup, enter Tabs in the Quick Find box, select Tabs, and then
click New in the Custom Object Tabs section. Then select your Invoice object.

2. In the Tab Style lookup, choose Form and click Next and then Next again.

3. It makes sense to display this new tab for the Warehouse app. On the Add to Custom Apps page, clear the checkbox next to all apps
except Warehouse.

4. Click Save.

17

Step 2: Add an Invoice Tab to the AppCreate an App and Database

Step 3: Reorder Tabs in the App
Take a look at the tabs across the top of your screen and you see the new Merchandise tab isn’t next to the Invoice tab. You can put tabs
in any order you like, so go ahead and put them next to each other.

1. From Setup, enter Apps in the Quick Find box, select Apps, and then click Edit next to your Warehouse app.

2. In the Selected Tabs list, select Invoices and use the up arrow to move it under Merchandise.

3. Click Save and then take a look at the tabs.

Step 4: Add a Status Field to the Invoice Object
If you try to create an invoice now, you won’t be impressed. There aren’t any fields that you can modify because they are all standard,
auto-managed fields. In this step, you extend the Invoice object to add a new Status picklist field to track the status of each invoice.

1. In Setup, enter Objects in the Quick Find box, then select Objects and then click Invoice.

2. Scroll down to the Custom Fields & Relationships related list and click New.

3. For Data Type, select Picklist and click Next.

18

Step 3: Reorder Tabs in the AppCreate an App and Database

4. Fill in the custom field details.

a. Field Label: Status

b. Type the following picklist values in the box provided, with each entry on its own line.

Open

Closed

Negotiating

Pending

c. Select Use first value as default value.

d. In the Help Text field, type Choose a value from the drop-down list.

5. Leave the defaults for the remaining fields and click Next, Next, and Save.

Tell Me More....
Before moving on to the next step, recall the Help text you added to the Status field. When users hover their pointer over the Status
field, a pop-up bubble appears with whatever help text you specify. Although it’s beyond the scope of this tutorial, understand that you
can easily create unique translations for app labels and help text so that the app supports multiple languages, again, without writing a
single line of code. Very cool.

Step 5: Try Out the App
Although your app isn’t completely done yet, you can create invoices and save them. It’s not a problem that the invoice is still missing
some fields. When you add more fields to the Invoice object, the new fields automatically appear on the records that already exist.

1. Click the Invoices tab.

2. Click New. Notice that you can choose a status for the invoice, but leave it as Open.

19

Step 5: Try Out the AppCreate an App and Database

3. Click Save.

4. Click the Invoices tab again and notice there’s a new invoice, with the number INV-0000. Create another new invoice, this time with
a Closed status.

5. Click the Invoices tab again and see your two invoices.

The database is starting to look better, but it’s still incomplete. An invoice is made up of line items that list the type and quantity of
merchandise being ordered. In the next tutorial, you’ll add another object—Line Items—and then relate that object to the other ones
we’ve created.

Tell Me More....
• You only have a few records so far, but how would the page look if you had hundreds of records? Thankfully, the default list view

for a tab shows you only the most recent records you touched and lets you page through sets with standard navigation controls.

• Another built-in feature is list views. A list view is a customized presentation of data that shows only the fields you want, based on
filters you define. For example, suppose you’re only interested in open invoices with a price greater than $1000. You can create a
custom list view that shows exactly those records. This is covered in a later tutorial.

Relate Objects

Level: Beginner; Duration: 10–15 minutes

In previous tutorials you created objects that stood on their own. The fields on the Merchandise object had no relation to the fields on
the Invoice object. In this tutorial, you create a Line Item object, and what’s special about this new object is that its fields are related to
both the Invoice and Merchandise objects.

• An invoice has one or more line items. In fact, you might say that a particular invoice “owns” its line items. That kind of relationship
is called a master-detail relationship, where the detail records refer to a master record.

• Line items also relate to merchandise through another kind of relationship called a lookup. You already saw something similar in the
Status field. When you create a new invoice, you can choose a status from the picklist. A lookup field is different because the
values come dynamically from a custom object rather than statically from a picklist.

Master-detail relationships and lookups might seem confusing now, but once you implement them, it will all be very clear.

20

Relate ObjectsCreate an App and Database

Step 1: Create the Line Item Object
Each invoice is made up of a number of invoice line items, which represent the number of merchandise items being sold at a particular
price. You are first going to create the Line Item object, and then relate it to the Invoice and Merchandise objects.

1. From Setup, enter Objects in the Quick Find box, then select Objects.

2. Click New Custom Object and fill in the custom object definition.

• Label: Line Item

• Plural Label: Line Items

• Record Name: Line Item Number

• Data Type: Text

21

Step 1: Create the Line Item ObjectCreate an App and Database

3. In the Optional Features section, select Allow Reports, and click Save.

Tell Me More....
You might be wondering why Line Item Number is a text field, when what you enter is a number. If line items are numbered, why not
make it an auto-number field, like Invoice? The short answer is that it’s easier to work with text when working with records, and this
tutorial is intended to be easy.

Step 2: Add a Quantity Field
Every line item needs to track the quantity ordered. So the next thing you need to do is add a Quantity field. Recall that the Merchandise
object also has a Quantity field to track how many items are in stock, and the steps to create the field are the same.

1. On the Line Item detail page, scroll down to Custom Fields and Relationships and click New.

2. For Data Type, select Number and click Next.

3. Fill in the field details:

• Field Label: Quantity

• Select Required

4. Leave the defaults for the remaining fields, and click Next, Next, and then Save.

22

Step 2: Add a Quantity FieldCreate an App and Database

Step 3: Relate Line Items to Invoice
Now that you have all the objects representing the data model, you need to relate them to each other. Line items are related to both
an invoice (an invoice is composed of a number of line items) and merchandise (a line item takes its price from the merchandise).

1. On the detail page of the Line Item object, scroll down to the Custom Fields & Relationships related list and click New.

2. For Data Type, select Master-Detail Relationship and click Next.

3. In the Related To field, select your Invoice custom object, and click Next.

4. For Field Label and Field Name enter Invoice.

5. Accept the defaults on the next three screens by clicking Next.

6. On the final screen click Save & New.

Tell Me More....
One way to think of this master-detail relationship is that an invoice now “owns” its line items. In other words, an invoice can now contain
multiple line items. One of the neat things about master-detail relationships is that they support roll-up summary fields, allowing you
to aggregate information about the child records. You’ll use that feature in a later tutorial.

Step 4: Look Up Merchandise Items
The other kind of relationship you need to create is called a lookup. As the name implies, the field gets its information by looking it up
dynamically in another object. In the last step, you used Save & New, so you should already be on the New Custom Field dialog.

1. For Data Type, select Lookup Relationship and click Next.

2. In the Related To field, select Merchandise and click Next.

3. For Field Label and Field Name enter Merchandise.

4. Verify your screen looks like the following image and then click Next.

5. Accept the defaults on the subsequent screens by clicking Next, and Next again.

23

Step 3: Relate Line Items to InvoiceCreate an App and Database

6. On the final screen, deselect the checkboxes for Merchandise Layout and Append related list to users’
existing personal customizations (you don’t want a list of line items on the Merchandise page).

7. Click Save.

Tell Me More....
At this point you have two relationships, a master-detail relationship that allows an invoice record to contain many line items, and a
lookup relationship that relates a particular line item to a piece of merchandise.

Step 5: Try Out the App
As you saw in the previous tutorial, the platform automatically generates a user interface for the objects you create, so that you can view,
edit, delete, and update records. Because you also related the objects, the user interface provides a way of navigating between related
records as well. You can see how all that works by creating another invoice record.

1. Click the Invoices tab and then New and Save.

2. Click New Line Item.

3. For Line Item Number, type 1.

4. For Quantity, type 2.

5. In the Merchandise field, type the first few letters of laptop and click the Find icon.

6. Click Laptop and then Save.

Tell Me More....
If you’re familiar with the products in your inventory, you can type the first few letters of a piece of merchandise and click Save. You
don’t need to click the Find icon, the system automatically finds the merchandise and adds it when you save the record. There’s a lot of
built-in functionality!

24

Step 5: Try Out the AppCreate an App and Database

Step 6: View the Schema
You now have three custom objects, several fields, and two kinds of relationships. If you have all of that in your head, awesome. However,
most people find this is an ideal time to use the old adage “a picture is worth a thousand words.”

1. From Setup, click Schema Builder.

2. In the left pane, click Clear All to remove the standard objects from the schema.

3. Select the checkboxes for Merchandise, Invoice, and Line Item.

4. Click Auto-Layout to arrange the objects, or manually adjust the layout if necessary.

The Schema Builder shows your objects, fields, and relationships in a standard entity-relationship diagram. In a relationship, the “crows
feet” at the end of the line tell you which side is the “many” side of a one-to-many relationship (one invoice can contain multiple line
items). When you’re done looking at the schema, click Close.

Note: Schema Builder isn't just for viewing your schema, it also supports drag-and-drop development for creating new objects
and fields. However, unlike the wizards you used so far, fields added using Schema Builder are not automatically added to page
layouts. You must configure page layouts before your new fields are visible to users. Field visibility and page layouts are covered
in subsequent tutorials.

Summary
At this point, you have created three custom objects: Merchandise, Invoice, and Line Item. On each of those objects you created custom
fields to represent text, numbers, and currency. Two of these fields have system-generated values: the Status picklist, which defaults
to Open, and the Invoice Number field, which is automatically assigned by the Auto-number data type. You also created user-defined
fields, such as the Quantity entered for each line item. Finally, you expanded on the basic data model by creating two fields that
get their values from other objects; these are the relationship fields you created in this tutorial.

The master-detail relationship allows you to aggregate information, so that an invoice can contain multiple line items, and those line
items can be aggregated. The lookup relationship allows you to pull in dynamic content, so that each piece of merchandise on a line
item automatically gets a price. The relationships also provide additional benefits. You can add up the price of each invoice line item

25

Step 6: View the SchemaCreate an App and Database

and create a sum total for the invoice, and you can navigate to the related records in a user interface. You’ll learn how to do those things
declaratively in the next tutorial, and later in code as well. Onward!

Load Data Using the Custom Object Import Wizard

Duration: 5–10 minutes

Most organizations keep important data in all sorts of places, including documents and spreadsheets. In this tutorial, you learn how to
load data that currently lives in a personal spreadsheet into the Warehouse app, where everyone in your organization can view and
manage the data.

There are several ways to load data, and this tutorial shows you only one method, using a the Custom Object Import Wizard. This wizard
uses a CSV file as its source. A CSV file is a plain text file with each field separated by commas—thus the name “comma-separated values.”

Prerequisites
Text Editor

This tutorial requires a text editor and the ability to upload a file from your computer. If you’re using a tablet or mobile device, you
may not be able to complete this tutorial depending on the capability of the device.

Step 1: Create the Data File
The first step is to make a simple data file that you can use for this tutorial.

1. To save you time, download the necessary CSV-formatted text file, from this URL.
https://raw.github.com/joshbirk/workshop2013/master/files/Merchandise.csv

2. Right-click and save the file locally. It should look like:

"Merchandise Name","Price","Quantity"
"17 Inch Monitor",99,200
"21 Inch Monitor",129,200
"25 Inch Monitor",179,200

Tell Me More....
Note that in the CSV file:

26

Load Data Using the Custom Object Import WizardCreate an App and Database

https://raw.github.com/joshbirk/workshop2013/master/files/Merchandise.csv

• The field names are on the first line. These names match the labels for fields in the Merchandise object.

• Text fields are delimited by quotes, allowing you to include spaces and special characters inside a text field. Fields that have a number
data type don’t require quotes.

Step 2: Load the Data
Loading data from a CSV file into a custom object is simple using the Custom Object Import Wizard.

1. From Setup, in the Quick Find field, type import and then click Import Custom Objects

2. At the bottom of the page, click Start the Import Wizard!

3. When the wizard starts, select Merchandise, then click Next.

4. Select No, and then click Next.

5. Select None, and then click Next.

6. Click Choose File or Browse... and select the data file you created earlier, then click Next.

7. Notice on the Field Mapping step you can match headings in your CSV file to field names in Salesforce. That was already done in
the CSV file, so you can click Next.

27

Step 2: Load the DataCreate an App and Database

8. Click Import Now! and then Finish.

Tell Me More....
Once you finish the wizard, the platform queues the data load. For large sets of data, it may take a while for the data load to happen,
and you’ll be notified by email when the data load completes. If you want to monitor this process more closely, in Setup, click Imports.

Step 3: Try Out the App
Once the data load is completed, go back to your app and confirm that the new Merchandise records are in place.

1. Click the Merchandise tab.

2. Next to the View drop-down list, make sure All is selected and click Go!

28

Step 3: Try Out the AppCreate an App and Database

CUSTOMIZE A USER INTERFACE

Level: Beginner; Duration: 30–40 minutes

You already know how to create a basic app and do things like create and relate objects, and customize the standard user interface. This
tutorial goes a step further and teaches you advanced point-and-click development to further enhance the underlying database and
improve the UI.

Create Views of Data

Level: Beginner; Duration: 5 minutes

A custom object tab in an application is a navigational element that, when clicked, displays data for the corresponding object. For
example, when you click on Invoices in the Warehouse app, you see a default list view of the most recent invoices that you've touched.
This tutorial teaches you more about views and how to create custom views to meet specific needs.

Step 1: View a List of Invoices
Notice how the All view sorts records alphabetically and provides navigation controls for large lists. So, right out of the box, you have
several default views that list invoices. But what if you need a custom view? No problem.

1. Select the Warehouse app and click the Invoices custom object tab. By default, the Recent Invoices view displays your most recently
viewed records — notice the pick list in the upper right corner of the view. You can update the view display by changing the picklist
to Recently Created and various other options.

2. Click Go! to switch from the Recent Invoices view and display a list of All invoices.

Notice how the All view sorts records alphabetically and provides navigation controls for large lists.

29

Tell Me More....
Right out of the box, you have several pre–built views that list invoices, with navigation and sorting. But what if you need a custom view?
Let’s say you want to see only closed invoices. No problem.

Step 2: Create a New View
In this step, you create a custom view that only shows invoices with a status of Closed.

1. On the Invoices tab, click Create New View and name it Closed Invoices.

2. Select All Invoices, and specify a filter criteria: Status equals Closed.

3. A custom view shows only the fields you select. Update the Selected Fields list with only Invoice Number, Status, and
Last Modified Date.

30

Step 2: Create a New ViewCustomize a User Interface

4. Select Visible only to me and then click Save.

Tell Me More....
Notice that you restricted the visibility of this view. That's a really important feature because you can create views of data for everyone
in your company, groups of people, or a view that only you can see.

Step 3: Try Out the App
In this step, we’ll test out our new view in the app.

1. To display the new Closed Invoices view from anywhere in the app, click the Invoices tab, select Closed Invoices, and click Go!

2. When your screen refreshes, you might not have any invoices in the new Closed Invoices view. If this is the case, edit one or more
invoices and change the status to Closed. Now go back to your view of closed invoices and notice the power of custom views.

31

Step 3: Try Out the AppCustomize a User Interface

Tell Me More....
At this point, you might think that views are read-only displays of data for a custom object—not so. In the new Closed Invoices view,
move over the Status field for a specific invoice. Notice that a pencil icon appears in the field, indicating that the field is editable
inline, right from the view. Double-click the Status field and the app provides you a way to edit the field.

Modify a Page Layout

Level: Beginner; Duration: 20-30 minutes

In Create Views of Data on page 29 you learned how to create a customized view for lists of data. However, you can also customize
what's on the detail page for a particular record, or the page layout. Click an invoice and take a look at the default page layout for all
invoices, which should look similar to this image:

32

Modify a Page LayoutCustomize a User Interface

This tutorial teaches you more about page layouts and how to modify them.

Step 1: Open the Page Layout Editor
Use one of the following ways to open the page layout editor.

• While on the record page that you want to modify:

– Click Edit Layout.

– Click the Quick Access menu on the right, and choose Edit Layout.

• From Setup, enter Objects in the Quick Find box, then select Objects, click the object you want to change the layout of,
scroll down to the Page Layouts section, and then click Edit next to the layout you want edit.

Step 2: Understand a Page Layout
The editor has upper and lower sections. The upper section is a retractable toolbox called the palette. The lower section is the preview
pane. When you scroll down the page, the palette moves with you, which makes it easy to edit longer pages.

33

Step 1: Open the Page Layout EditorCustomize a User Interface

In the page layout, several sections organize related information.

• The Highlights Panel is useful for displaying key information at the top of the page.

• The Quick Actions in the Salesforce Classic Publisher section is useful for customizing the actions that appear in the publisher in the
full Salesforce site.

• The Salesforce1 and Lightning Experience Actions section enables you to customize the actions that appear in Salesforce1.

• At the top of the Invoice Detail is the area for standard buttons (Edit, Delete, and so on) and custom buttons.

• Next comes the Invoice Detail, which has three default sections.

– Information typically contains fields that users can manipulate at some point during the lifecycle of a record (creation and
updates). By default, this section has two columns for fields.

– System Information typically contains fields that the platform automatically maintains—fields that users cannot edit. This section
is also a two-column layout.

– Custom Links typically contains custom navigation links.

• Below Invoice Detail is a section for Mobile Cards. By default, this section is empty. Mobile cards only appear in Salesforce1.

• Last on the page is a related list for related Line Items.

You can make many changes to the page layout.

1. Hover over a section title. The mouse pointer changes, indicating that you can drag the section to a new location relative to other
sections.

2. Hover over the upper-right corner of any section. Two buttons appear: one for removing the section (don't click it!) and another for
editing its properties. Go ahead and click . You can now edit the name of the section (only for non-default sections), when to
display the section header, the section layout (one or two columns), and the tab-key order among section fields. Click Cancel.

34

Step 2: Understand a Page LayoutCustomize a User Interface

Step 3: Rearrange Fields on a Page Layout
In this step, make some simple changes to the Invoice Detail area of the page layout.

1. Click for the Information section (see above if you forgot how to find this) and change the section layout to one column. Click
OK.

2. Drag the Owner field above the Status field. When you’re done, the modified Invoice Detail area should look like this.

Step 4: Add Fields to the Related List
As it is now, the related list of Line Items is not very informative—it only has the line item numbers. In this step, improve the related list
by adding some new fields.

1. Click Related List Properties (the wrench icon above the Line Items section), add Merchandise and Quantity to the
Selected Fields list, then click OK. When you return to the page layout editor, the related list preview should now appear similar to
this:

35

Step 3: Rearrange Fields on a Page LayoutCustomize a User Interface

2. That's it—you're done modifying the page layout. At the top of the page, in the toolbox, click Save.

Step 5: Try Out the App
Check out the results of your work.

1. Click the Invoices tab to return to your app, and then click an invoice that has at least one line item.

2. Notice the rearranged fields in the Invoice Detail area, as well as the new fields in the Line Items related list.

Step 6: Edit a Mini Page Layout
When you are in the Warehouse app, notice the Recent Items sidebar. Specifically, move over a recent invoice and notice that you get
a mini page popup that previews the invoice information. See below—that's not very informative, is it?

It's easy to change this default mini page layout as well.

1. Return to the page layout editor for Invoice.

2. Click Mini Page Layout at the top of the palette.

3. Add Invoice Number, Owner, and Status to the list of selected fields, and then click Save. The improved popup should
look more like:

36

Step 5: Try Out the AppCustomize a User Interface

Customize a Layout for Mobile Access

Level: Beginner; Duration: 25–30 minutes

A well-designed page layout can often be used by both desktop and mobile devices. So far in this tutorial, none of the objects are large
and unwieldy on a mobile screen. However, you can imagine that an object with a hundred fields might be difficult to use on a phone.
In cases like this, it’s useful to create a mobile-specific page layout. Just like the page layout you modified earlier, a mobile-optimized
layout can be assigned to different roles, so that people who primarily use a phone get the mobile version, while desktop-only users get
the standard version.

In this tutorial you learn how to:

• Modify an existing page layout so that it’s optimized for a mobile device—If your users access your app from desktop and mobile
devices, then you might want to optimize your page layouts so that they work with various form factors. However, if your users are
entirely or mostly mobile, they might find a mobile-specific layout is more productive.

• Create a compact layout—Compact layouts determine the fields that show up in a record’s highlights area and the record’s feed
items in the full site. Compact layouts are a great way to display a record's key fields at a glance.

• Add mobile cards to the related information page—Mobile cards can show lookup information or Visualforce pages.

Note: There’s another kind of mobile layout called a global publisher layout, which determines where global actions go. You’ll
learn about that layout when you create global actions in Quickly Create Records Using Global Actions on page 94.

Step 1: Create a Page Layout for Mobile Users
The objects in the Warehouse app don’t have enough fields to demonstrate why a mobile page layout is necessary, so in this step, you
customize the page layout for the Account object. This object isn’t used in the Warehouse app, but it’s a useful exercise for any mobile
layout.

1. First navigate to an existing account by clicking the (+) tab and then Accounts.

37

Customize a Layout for Mobile AccessCustomize a User Interface

2. In the View drop-down list, select All Accounts.

3. Click the first account: Burlington Textiles Corp of America. Notice that there’s a lot of information on this page, and it might be
a challenge to navigate on a small screen.

4. From Setup, enter Accounts in the Quick Find box, then select Page Layouts.

5. Name the page layout Account Mobile Layout and then Save.

6. Add a few fields that are important to mobile technicians. Drag the Account Site, Shipping Address, and Phone
fields onto the Fields section of the preview pane.

7. Click the Related Lists category in the palette, and drag the Cases and Contacts elements to the Related Lists section. Related lists
show up on the record related information page in Salesforce1. When mobile users assigned to this page layout views an account
record’s related information, they’ll see preview cards they can click to see information about the cases and contacts for that account.

8. Click Save and then No when asked if you want to override users’ customized related lists.

9. Now you need to assign the mobile-optimized page layout to a user profile. Click Page Layout Assignment and then Edit
Assignment.

10. Click System Administrator.

11. In the Page Layout to Use drop-down list, select Account Mobile Layout, and then click Save.

12. Now when you access the Account object, you’ll do so through the mobile-optimized layout. Try it now by going to Salesforce1 and
tapping Accounts in the navigation menu.

Since you just accessed the Burlington Textiles Corp of America account from the full site, you should see that in the Recent Accounts
list.

13. Tap that account.

38

Step 1: Create a Page Layout for Mobile UsersCustomize a User Interface

Tell Me More....
Normally, after creating a page layout for mobile users, you’d add it to a mobile user’s profile. To keep things simple (so that you don’t
have to log out and switch users), you simply added the page layout to your own profile instead.

Step 2: Display Key Fields Using Compact Layouts
In the previous tutorial you learned how standard page layouts can be used to optimize a layout for mobile users. However, page layouts
aren’t the only thing used to customize how your data appears in a mobile environment. Salesforce1 uses compact layouts to display a
record's key fields at a glance.

In this tutorial, you create a custom compact layout and then set it as the primary compact layout for the Merchandise object.

1. From Setup, enter Objects in the Quick Find box, then select Objects, then click the Merchandise object.

2. Scroll down to the Compact Layouts related list and click New.

3. In the Label field, enter Merchandise Compact Layout.

4. Move Merchandise Name, Price, and Quantity to the Selected Fields list, and then click Save.

5. Now you need to set the compact layout as the primary. Click Compact Layout Assignment.

6. Click Edit Assignment, select the compact layout you just created, and then click Save.

Tell Me More....
• In this exercise you only used three fields, but the first four fields you assign to your compact layout populate the record highlights

section at the top of each record view.

• You don’t need to create compact layouts for Salesforce1. If you don’t create them, records display using a read-only, default compact
layout. After you create a custom compact layout you can replace the default with your new layout.

• Compact layouts aren’t just for mobile. When accessing Salesforce from a desktop browser, compact layouts determine which fields
appear when a feed item is created.

39

Step 2: Display Key Fields Using Compact LayoutsCustomize a User Interface

Step 3: Add Mobile Cards to the Related Information Page
You’ve already seen the related information page in Step 3: Explore the Mobile App on page 10; this is the page that shows Activities
by default. You navigate to the related information page by swiping left on the detail page for a record. Using mobile cards, you can add
related lookup cards and Visualforce page cards to this record’s related information page.

In this step, you add a related lookup card to the Merchandise object. Merchandise already has a lookup field that’s automatically
generated, Last Modified By, so you can use that.

1. Open the page layout for Merchandise from Setup by entering Objects in the Quick Find box, selecting Objects, and then
selecting Merchandise.

2. Scroll down to the Page Layouts section and click the Edit link next to Merchandise Layout.

3. In the palette, click the Expanded Lookups category.

4. Drag Last Modified By to the Mobile Cards section, and then click Save.

5. To test it out, go back to your mobile device and look at a piece of merchandise.

6. Swipe left to get to get to the related information page and you’ll see the mobile card you added.

Tell Me More....
• You don’t have any Visualforce pages yet, but once you’ve enabled one for mobile, you can add those pages to the Mobile Cards

section like you just did.

• You can also use the Mobile Cards section to add elements from the Components category. That category doesn’t appear in this
tutorial, because no components are available on custom objects.

• Unlike compact layouts, mobile cards only appear in Salesforce1.

40

Step 3: Add Mobile Cards to the Related Information PageCustomize a User Interface

Enable Social Collaboration

Level: Beginner; Duration: 5–10 minutes

Users can follow merchandise records and collaborate on them using Chatter. When you are following a record, the platform automatically
pushes notifications about updates to you. The feed for the record becomes a running log where users can collaborate on the data
record by posting comments, files, links, and more.

If you look at the default Invoice page layout in the Warehouse app, social collaboration isn't available. Why not? When you created the
Warehouse app, the app wizard automatically enabled feed tracking on the original object—in this case, Merchandise. However, for
new custom objects, the platform doesn’t enable feed tracking by default. But it's easy to enable this functionality yourself in just a
minute or two.

Once you’ve enabled feed tracking, you can also receive notifications on your mobile device, so that you’ll know when someone comments
on your post or otherwise interacts with you. At the end of this tutorial you enable push notifications, which will send alerts to your
mobile device, even when you’re not using the Salesforce1 downloadable app.

Step 1: Examine the Merchandise Page Layout
Take a look at how Merchandise already has a feed.

1. Click the Merchandise tab.

2. Click into any piece of merchandise and review the Merchandise page layout. Notice the top half of the page is dedicated to social
collaboration. You can follow a piece of merchandise, attach files, and post useful links. You want that functionality for invoices too.

41

Enable Social CollaborationCustomize a User Interface

Step 2: Enable Collaboration on Invoices
To enabled feed tracking:

1. From Setup, enter feed in the Quick Find box.

2. Click Feed Tracking.

42

Step 2: Enable Collaboration on InvoicesCustomize a User Interface

3. Notice two fields are being tracked for Merchandise. Take a look at your Invoice object, and notice no fields are being tracked.

4. To enable feed tracking for Invoice, click Invoice, select Enable Feed Tracking, select Status, and click Save.

Step 3: Try Out the App
Now that you've finished modifying the Invoice page layout, have a look around.

1. Click the Invoices tab, click into the detail page for an Invoice, and notice that the Chatter feed for an Invoice is now available.

2. You can collaborate on this invoice by clicking Follow. Now if you update an invoice (to change it from Closed to Open for example),
anything that happens to the invoice status will automatically appear in your Chatter feed, and the feed of anyone else who follows
this invoice.

43

Step 3: Try Out the AppCustomize a User Interface

Tell Me More....
This tutorial only touches on Chatter, focusing on the feeds for a custom object. From the app menu in the upper right, select Salesforce
Chatter to see a feed-centric view of data in your organization. The Chatter app lets you securely collaborate with other users in your
organization—kind of like a private, secure Facebook just for you and your coworkers.

Step 4: Enable Notifications for Mobile
Once you’ve enabled a feed, you will see those updates in Chatter, but you can also receive updates on your mobile device, even when
your app isn’t running! To receive these updates, you need to enable notifications.

1. From Setup, enter Salesforce1 Notifications in the Quick Find box, then select Salesforce1 Notifications

2. Select the notifications you want your Salesforce1 users to receive.

3. If you’re authorized to do so for your company, select Include full content in push notifications.

44

Step 4: Enable Notifications for MobileCustomize a User Interface

4. Click Save. If you checked the box to include full content in push notifications, a pop-up appears displaying terms and conditions.
Click OK or Cancel. By enabling this option, you’re agreeing to the terms and conditions on behalf of your company. For details, see
Salesforce1 Mobile App Notifications in the Salesforce help.

Now when someone mentions you in a post or comments on a post you created, you’ll get a notification on your device, even when
your Salesforce1 downloadable app isn’t running! You can’t see any notifications yet, because you need to create another user to make
some updates. You’ll do that in a later lesson.

45

Step 4: Enable Notifications for MobileCustomize a User Interface

ADD APP LOGIC WITH CLICKS, NOT CODE

Level: Beginner; Duration: 30–40 minutes

At this point you already know how to create a basic app and do things like create and relate objects, and customize the standard user
interface. In this set of tutorials, you’ll go a step further by learning advanced point-and-click development to further enhance the
underlying database and improve the UI.

Automate a Field Update Using Workflow

Level: Beginner; Duration: 10–15 minutes

Your company can operate more efficiently with standardized internal procedures and automated business processes. In Salesforce, you
can use workflow rules to automate your procedures and processes. Workflow rules can trigger actions (such as email alerts, tasks, field
updates, and outbound messages) based on time triggers, criteria, and formulas.

Automatically populating a field with a default value is a common business rule. Recall that you did something similar already using a
lookup field on two related objects. A Line Item can “look up” merchandise and give the user a choice of which item they want. But what
if, rather than having a user choose, populating the field was done automatically? That’s when you need a workflow rule, so that depending
on different conditions, Salesforce can automatically populate a field with the appropriate value, and without user intervention.

Step 1: Examine the Line Item Detail Page
To get started, quickly review the Invoice and Line Item objects from earlier tutorials.

1. Select the Warehouse app from the app picker, then click the Invoices tab.

2. Open any invoice, and then open the detail page for a line item. Notice there’s no price field for the line item.

46

In this tutorial, you create a new field for the Line Item object called Unit Price. You don’t want users creating their own price, and
since the price is already stored in the Merchandise object, you can populate this field automatically using a neat feature called a workflow
rule.

Step 2: Create a Unit Price Field
The steps for creating the new Unit Price field are essentially the same as when you created the Price field on the Merchandise
object except this time name the field Unit Price.

1. From the Line Item tab or record, click the Quick Access menu (the tab that pops out from the right side of the window), hover over
View Fields and click New. (If you aren't on the Line Item object already, in Setup, enter Objects in the Quick Find box, then
select Objects. Then click Line Item, and in the Custom Fields and Relationships section, click New.)

2. For the data type, select Currency and then click Next.

3. Fill in the custom field details as follows.

• Field Label: Unit Price

• Length: 16

• Decimal Places: 2

4. Leave the defaults for the remaining fields by clicking Next on subsequent screens until you can Save.

5. Now go back to an existing Invoice and add a new Line Item. Notice there's a new field for Unit Price, but you have to populate
that field manually. You want this field to populate automatically, so click Cancel, and add this new functionality.

Step 3: Automatically Populate the Unit Price Field
To automatically populate the new Unit Price field, create a workflow rule.

1. From Setup, enter Workflow Rules in the Quick Find box, then select Workflow Rules.

2. Optionally, read the brief introduction, click Continue, and then click New Rule.

3. Select the Line Item object, and click Next.

4. For the rule name, enter Populate Unit Price, and for the description enter something like Populates the Line
Item object’s Unit Price field with the value of the Merchandise object’s Price
field.

5. For evaluation criteria, select created.

47

Step 2: Create a Unit Price FieldAdd App Logic with Clicks, Not Code

6. In the first rule criteria row, for the field select Line Item: Quantity, for the operator select greater or equal, and
for the value enter 1.

7. Click Save & Next.

Note: It makes sense to fire this workflow rule only for new line item records because you are effectively assigning a default
field value when creating a new record. Later on, users might need to adjust the price of merchandise in each line item (for
example, to offer discounts).

Continuing on, the next step is to assign an action to the workflow rule to update the Unit Price field automatically.

1. Click the drop-down list that reads Add Workflow Action and choose New Field Update.

2. In the Name field, enter Copy Unit Price.

3. In the Field to Update list, choose Line Item and then Unit Price.

4. Select the option to use a formula to set the new value. Before continuing, confirm that your screen matches the following.

48

Step 3: Automatically Populate the Unit Price FieldAdd App Logic with Clicks, Not Code

5. Click Show Formula Editor, and then click Insert Field.

6. In the first column choose Line Item >, in the second column choose Merchandise >, and in the third column choose Price.

7. Confirm that your screen matches the following, and then click Insert.

8. Click Save, and then click Done to return to the detail page of the new workflow rule.

Tell Me More...
In the formula, notice some new syntax, namely "Merchandise__r". You’ve seen __c used already, so what’s with the __r? That’s
the platform’s object notation for a field that’s related to another object. You can use related fields to traverse object relationships and
access related fields. In this case, the formula uses the relationship between the Line Item record and Merchandise object to get the
corresponding Merchandise record's value for Price.

49

Step 3: Automatically Populate the Unit Price FieldAdd App Logic with Clicks, Not Code

Step 4: Update Total Inventory When an Order is Placed
The inventory of merchandise should be automatically maintained as orders are placed. When you create a new invoice ("Open" status),
every new line item needs to decrease the total inventory by the number of units sold. Similarly, updates to an existing line item need
to update the total inventory by the difference in units sold.

There are a few different ways you can make this update. You could do this in Apex code, or by creating a Flow, or by creating another
workflow rule. For simplicity, you’ll stick with workflow for now, but there is one minor problem to fix first, which is that the workflow
field update won’t work with a lookup relationship. So the first step is to change the lookup to a master-detail. Fortunately, the platform
makes such changes very easy.

1. From Setup, enter Objects in the Quick Find box, then select Objects, and click Line Item.

2. Scroll down to Custom Fields and Relationships, and next to Merchandise click Edit.

3. Click Change Field Type, and then select Master-Detail Relationship.

4. Click Next, and then Save.

Now you can create the workflow rules.

1. From Setup, enter Workflow Rules in the Quick Find box, then select Workflow Rules

2. On the All Workflow Rules page, click New Rule.

3. Select Line Item as the object, and click Next.

4. In the Rule Name field, enter Line Item Updated.

5. For Evaluate the rule when a record is: select created, and every time it’s edited.

6. In the Rule Criteria field, leave criteria are met selected.

7. In the Field drop-down list, select Invoice: Status. In Operator, select equals. For Value, click the lookup icon and choose
Open, and click Insert Selected.

8. Click Save & Next.

9. Click Add Workflow Action and choose New Field Update. The New Field Update wizard opens.

10. In the Name field, enter Update Stock Inventory.

11. In the first Field to Update drop-down list, select Merchandise. In the second, select Quantity.

12. Select Use a formula to set the new value.

13. Click Show Formula Editor.

14. Click Insert Field and choose Line Item > Merchandise > Quantity. Click Insert to add the field to the editor.

15. Click Insert Operator and choose – Subtract.

16. Click Insert Field and choose Line Item > Quantity. Click Insert to add the field to the editor.

The completed formula should be Merchandise__r.Quantity__c - Quantity__c.

17. Click Check Syntax, and make corrections if necessary.

18. Click Save to close the New Field Update wizard and return to Step 3 of the Workflow wizard.

19. Click Done.

Step 5: Activate the Workflow Rule
This is a tiny step, but it’s an important one. By default, workflow rules are not active.

50

Step 4: Update Total Inventory When an Order is PlacedAdd App Logic with Clicks, Not Code

1. In Setup, enter Workflow Rules in the Quick Find box, then select Workflow Rules to get to the All Workflow Rules
page.

2. Next to Line Item Updated and Populate Unit Price, you’ll see an Activate link. Click the link next to each workflow rule.

Tell Me More...
Workflow rules are not activated by default because you might turn off workflow rules when running bulk processes. For example, you
might want to update a whole bunch of records at the same time, and firing the workflow rule each time wouldn’t invalidate your
processes. Workflow rules can also do things like send email updates, and you might not want to send thousands of emails when you’re
doing a simple price change.

Step 6: Try Out the App
Now try out the revised app and see how the new workflow rule implements your business logic.

1. Click the Invoices tab and either create a new Invoice or edit an existing Invoice.

2. Add a New Line Item and after you've chosen the Merchandise, click Save.

3. Click back into the detail page for the new Line Item and notice how the first workflow rule you created automatically populated
the Unit Price field by looking up the Price of the Merchandise that you selected. Sweet.

Add a Formula Field

Level: Beginner; Duration: 5–10 minutes

Another thing that’s missing from the Line Item object is a Line Item Total field that displays the product of each Line Item’s Quantity
and Unit Price. In this tutorial, you implement this common business logic by creating a new formula field in the Line Item object, again,
without writing any code.

Step 1: Calculate a Value for Each Line Item
In the first step of this tutorial, you’ll add a new calculated field called Line Item Total to the line item. This field multiplies the number
of items with the price and acts as a total for each line item.

1. From Setup, enter Objects in the Quick Find box, then select Objects.

2. Click the Line Item object. Then, in the Custom Fields & Relationships related list, click New.

51

Step 6: Try Out the AppAdd App Logic with Clicks, Not Code

3. Choose Formula, and click Next.

4. For Field Label, enter Line Item Total.

5. For Formula Return Type, choose Currency and click Next.

6. Click the Insert Merge Field drop-down list, and choose Unit Price. You should now see Unit_Price__c in the text box.

7. Click the Insert Operator drop-down list and choose Multiply.

8. In the Insert Merge Field drop-down list, select Quantity. You should now see Unit_Price__c * Quantity__c in the
text box.

9. Click Next, Next, and then Save.

Tell Me More....
The Formula field type is great for automatically deriving field values from other values, as you have done here. The formula you entered
was quite straightforward: a simple multiplication of two field values on the same record. There's also an Advanced Formula tab, which
allows you to do much more with these formulas.

Step 2: Try Out the App
To see the new Line Item Total formula field in action, you’ll need to create a new line item.

52

Step 2: Try Out the AppAdd App Logic with Clicks, Not Code

1. Click the Invoices tab and then click an existing invoice.

2. Add a new line item, select a piece of merchandise, and enter a quantity.

3. Save the line item and you can see the formula field in action.

Add a Roll-Up Summary Field

Level: Beginner; Duration: 5–10 minutes

Another thing that's missing from the Invoice is a field that aggregates all of the line items into one big invoice total. This is easy to do
if the objects are in a master-detail relationship, because you can use a roll-up summary field.

Step 1: Calculate a Total With a Roll-Up Summary Field
Now that you have the total for each line item, it makes sense to add them all to get the invoice total. Because the line items have a
master-detail relationship with the invoice, you can use a roll-up summary field to calculate this value. Roll-up summary is a special type
of field that lets you aggregate information about related detail (child) objects. In this case, you want to sum the value of each line item.

1. Navigate back to the Invoice custom object page from Setup by entering Objects in the Quick Find box, then selecting
Objects and then clicking Invoice.

2. In the Custom Fields & Relationships related list click New.

3. Choose Roll-Up Summary as the data type, and click Next.

4. For the Field Label field, enter Invoice Total, and click Next.

5. In the Summarized Object list choose Line Items.

6. For Roll Up Type, select Sum.

7. In the Field to Aggregate list choose Line Item Total.

8. Verify that your screen looks like this. Then click Next, Next and Save.

53

Add a Roll-Up Summary FieldAdd App Logic with Clicks, Not Code

Step 2: Try Out the App
To see the new Invoice Total formula field in action, you only need to examine an invoice.

1. Click the Invoices tab and then click an existing invoice.

2. Notice the new Invoice Total field that “rolls up” all the values from the detail object’s Line Item Totals.

3. To get the Line Item Total field to appear on the detail page, you’ll have to edit the page layout. (If you haven’t done that yet, see
Modify a Page Layout on page 32). When you do, it should look like the following image.

Enforce a Business Rule

Level: Beginner; Duration: 5–10 minutes

Typically, every business app enforces rules that prevent bad data from getting into the system. Without such rules, things can get really
messy, really fast because users might not adhere to these rules on their own. In this tutorial, you learn how to enforce a basic business
rule for the Warehouse app—you can’t order zero or negative items. To do this, you create and test a validation rule, all in just a couple
of minutes without any coding.

Step 1: Understand the Business Rule
Before you begin, make sure you have a clear understanding of this particular business rule.

54

Step 2: Try Out the AppAdd App Logic with Clicks, Not Code

1. Select the Warehouse app.

2. Click the Invoices tab, select an invoice, and look at a specific line item.

3. Play around with the quantity field for the line item. Notice that a value is required, but that you can set the value to any number: 0,
-10, 3.14159. You don’t want users entering bad data (such as negative numbers), so this situation isn’t acceptable.

Step 2: Create a Validation Rule
Enforcing basic business rules is easy and doesn’t require any coding.

1. From Setup, enter Objects in the Quick Find box, then select Objects, click Line Item, scroll down to the Validation Rules
related list, and click New.

2. For Rule Name type Validate_Quantity.

3. Optionally fill out the Description field. It’s a good practice to document business logic so that other developers can easily
understand the purpose of the rule. Use the documentation links if you need extra help on this page.

4. In the Error Condition Formula area, you build a validation rule’s error condition formula to identify when the error condition evaluates
to TRUE.

a. Click Insert Field to open the Insert Field popup window.

b. Select Line Item > in the first column and Quantity in the second column.

c. Click Insert.

d. Type the less-than-or-equal-to symbol (<=) and the numeral 0, so the formula looks like:

Quantity__c <= 0

5. Click Check Syntax to make sure there are no errors. If you do find errors, fix them before proceeding.

55

Step 2: Create a Validation RuleAdd App Logic with Clicks, Not Code

6. In the Error Message field, type You must order at least one item.

7. For the Error Location, select Field, then choose Quantity from the drop-down list.

8. Click Save.

Tell Me More....
Take a quick look at the Validation Rule Detail page. Notice that the new validation rule is “Active” meaning that the platform is currently
enforcing the rule. Validation rules, unlike workflow rules, default to active. In certain situations, you might want to deactivate the rule
temporarily (for example, before loading a bunch of data). This is easy to do by simply deselecting the Active box (but don’t do this
now).

56

Step 2: Create a Validation RuleAdd App Logic with Clicks, Not Code

Step 3: Try Out the App
Now that the rule is in place and active, it’s time to give it a try.

1. Click the Invoices tab and select an existing invoice.

2. Click New Line Item

3. Enter a line item number and a quantity of –1.

4. Once you choose a merchandise item and click Save, you’ll see the error message that you set up for the rule.

5. Fix the error by entering a valid quantity and then Save.

Tell Me More....
• If you didn’t see the error message, check the validation formula again. You need to make the rule fire when the condition evaluates

to TRUE.

• The formula in this tutorial is rather simple, but don’t let that fool you. The platform’s formula syntax empowers you to enforce a
wide range of business rules that not only includes one object, but pulls in other related objects as well.

Step 4: Modify the Validation Rule
Modify the existing validation rule to check how many items are in stock.

1. From Setup, enter Objects in the Quick Find box, select Objects, select Line Item, scroll down to the Validation Rules
related list, and edit the Validate_Quantity rule.

2. Edit the Description field to explain that it won’t allow users to order more items than are in stock.

3. In the Error Condition Formula area, start by putting some parentheses around the first rule, insert the logical OR operator, and then
add another set of parentheses so that the error condition looks like this:

(Quantity__c <= 0) || ()

4. Click between the second set of parentheses, then click Insert Field to open the Insert Field popup window.

5. Leave Line Item > selected in the first column, select Quantity in the second column, and then click Insert.

6. Type or insert the greater-than symbol (>).

7. Click Insert Field and select Line Item > in the first column, Merchandise > in the second column, and Quantity
in the third column.

57

Step 3: Try Out the AppAdd App Logic with Clicks, Not Code

8. Click Insert and verify the code looks like the following:

(Quantity__c <= 0) || (Quantity__c > Merchandise__r.Quantity__c)

9. Click Check Syntax to make sure there are no errors.

10. Finally, edit the Error Message field to add You can’t order more items than are in stock, and then
Save.

Tell Me More....
Take a look at the formula you created.

• Mechandise__r—Because the Merchandise object is related to the Line Item object, the platform lets you navigate from a line
item record to a merchandise record; that's what the Mechandise__r is doing.

• Quantity__c—This is the field you created to track the total amount of stock on a merchandise record.

• Merchandise__r.Quantity__c—This tells the system to retrieve the value of Quantity field on the related merchandise
record.

• Quantity__c—This refers to the Quantity field on the current (line item) record.

Putting it all together, the formula checks that the total inventory on the related merchandise record is less than the number of units
being sold. As indicated on the Error Condition Formula page, you need to provide a formula that is true if an error should be displayed,
and this is just what you want: it will only be true when the total inventory is less than the units sold.

Step 5: Try Out the New Rule
Now that the modified rule is in place, test it.

1. Click the Invoices tab and select an existing invoice.

2. Create a New Line Item and type a quantity of 6000.

3. Choose a merchandise item, and click Save. You see the error message that you set up for the rule.

4. Fix the error by entering a valid quantity, and then click Save.

Tell Me More....
• Validation rules and formulas combine to create really powerful business logic, with very little development effort.

• For a list of sample validation rules, make sure to read “Examples of Validation Rules” in the Salesforce Help:
https://help.salesforce.com/HTViewHelpDoc?id=fields_useful_field_validation_formulas.htm.

Create an Approval Process

Level: Beginner; Duration: 10–15 minutes

An approval process specifies the steps necessary for a record to be approved and who must approve it at each step. A step can apply
to all records included in the process or just records that have certain attributes. An approval process also specifies the actions to take
when a record is first submitted for approval and that record is approved, rejected, or recalled.

58

Step 5: Try Out the New RuleAdd App Logic with Clicks, Not Code

https://help.salesforce.com/HTViewHelpDoc?id=fields_useful_field_validation_formulas.htm&language=en_US

Step 1: Create an Approval Process
To create an approval process, you start in Setup.

1. From Setup, enter Approval Processes in the Quick Find box, then select Approval Processes.

2. In the Manage Approval Process For drop-down list, choose Line Item.

3. Click Create New Approval Process and then Use Jump Start Wizard.

4. In the Name field, enter Approve Unit Price Change

5. Click the drop-down list next to Use this approval process if the following, and choose Formula
evaluates to true.

6. In the formula field, click Insert Field, select Line Item > and then select Unit Price. Click Insert.

7. Click Insert Operator and select <> Not Equal.

8. Click Insert Field, select Line Item >, select Merchandise > and then Price. Click Insert. Before moving on, make
sure your screen looks like:

59

Step 1: Create an Approval ProcessAdd App Logic with Clicks, Not Code

9. Now you need to assign the approval to someone. For large companies where multiple people could have the ability to grant
approval, you might assign this to a queue. In DE orgs there are only two users, so click the option for Automatically assign
to approvers and choose Admin User. (If you’ve edited your profile, this will be your name, note that you may need to click
the lookup icon if you don't’s see your name listed.)

10. Make sure your screen looks like this and then Save your work.

11. Click OK in the pop-up, and then click View Approval Process Detail Page.

Step 2: Examine the Approval Process Detail Page
The detail page of the approval process has a lot going on, and it's worth a minute to explore the user interface.

60

Step 2: Examine the Approval Process Detail PageAdd App Logic with Clicks, Not Code

1. Edit every step of an approval process.

2. Clone or delete an approval process.

3. Activate and deactivate an approval process.

4. View an approval process diagram as a flow chart.

5. View general details of the approval process.

In addition, you can add new steps and actions (email alerts, field updates, and outbound messages) wherever you want.

Step 3: Modify Approval Process Actions
In this step you modify the approval process so that if the price change is rejected, the price reverts back.

1. In the Final Approval Actions section, click Edit next to Record Lock.

2. Choose Unlock the record for editing, and then click Save.

3. In the Final Rejection Actions section, click Add New and choose Field Update.

4. In the Name field, enter Reset Price.

5. In Field to Update, choose Unit Price.

6. Select Use a formula to set the new value.

7. Click Show Formula Editor.

8. Use the Formula Editor to select Line Item >, then Merchandise >, then Price.

9. Click Insert, and then click Save.

Step 4: Activate the Approval Process
Just like with workflow rules, you must activate an approval process before you can use it. This might seem like an unnecessary step
until you think about situations where you might not want an approval process to run. For example, let's say you want to run a special
promotion and decrease the price of a certain laptop in all open invoices. This would fire off the approval process for every open invoice,
creating a bottleneck to getting orders out the door. In a case like this, you'd want to deactivate the approval process before running
the batch update. When you're finished, you'd activate the approval process again.

1. Click Activate and then click OK in the pop-up.

2. While you’re on the detail page, click View Diagram to get a visual representation of your approval process. You can click any of
the nodes to get more information.

61

Step 3: Modify Approval Process ActionsAdd App Logic with Clicks, Not Code

Before you can see how the approval process works, you need to make sure that your users will be able to submit the relevant records
for approval. Otherwise, the approval process will never start! In this step, you add the Submit for Approval button to the Line Item page
layout.

1. From Setup, enter Objects in the Quick Find box, then select Objects, and click Line Item.

2. In the Page Layouts related list, click Edit next to Line Item Layout.

3. From the Buttons category in the palette, drag the Submit for Approval button to the Standard Buttons area.

4. Click Save.

Now all users assigned to this page layout will be able to submit line items for approval.

Step 5: Try Out the App
Now it's time to try out the new approval process and simulate the workflow as both the submitter and approver of a change.

1. Click the Invoices tab, and choose an existing invoice.

2. Add a new item to the invoice.

3. Click Edit next to the new line item, reduce the value for Unit Price, and then click Save.

4. Click Submit for Approval and OK.

5. Notice that the record is locked, you get a default email, and in the Approval History related list the overall status is Pending.

6. Click the link you received in your email, add a comment, and then click Approve. Notice the record is unlocked and the overall
status is Approved.

7. Repeat steps 1-6, but this time reject the price change. Notice that Unit Price reverts to the default merchandise price.

62

Step 5: Try Out the AppAdd App Logic with Clicks, Not Code

Tell Me More....
Approval processes are automatically included on your Home tab. If you click the Home tab, you can see the items you need to approve
and reject right there.

Step 6: Configure Approvals for Chatter and Salesforce1
Approval processes have built-in support for Chatter posts, which means they can also show up on your mobile device.

1. In Setup, enter “Chatter Settings” in the Quick Find box, then select Chatter Settings.

2. Click Edit.

3. Select Allow Approvals, and then click Save.

Approval feed items will now show up on your users’ Chatter feed on the full site and in Salesforce1.

Create a Flow

Note: Visual Workflow isn’t supported in Salesforce1.

Level: Beginner; Duration: 15–20 minutes

Visual Workflow enables you to build applications, known as flows, to guide users through screens for collecting and updating data. You
can visually build flows using the drag-and-drop user interface of the Cloud Flow Designer. No coding required!

In this tutorial, we’ll create a simple flow that does the following each time it runs:

• Prompt the user for the line item information.

63

Step 6: Configure Approvals for Chatter and Salesforce1Add App Logic with Clicks, Not Code

• Create the line item record for the invoice.

• Reduce the quantity of merchandise in stock by the quantity ordered in the line item.

Step 1: Add Flow Variables
You can use flow variables to store data that can be used throughout the flow and referenced as values for updating record fields. In
this tutorial, we’ll create two flow variables.

1. From Setup, enter Flows in the Quick Find box, then select Flows.

2. Click New Flow.

If prompted, activate the Adobe® Flash® plug-in.

3. Create the first variable.

a. From the Resources tab, double-click Variable.

b. Configure the variable as follows.

ValueField

vQuantityAvailableUnique Name

Quantity of merchandise in stock.Description

NumberData Type

0Scale

c. Click OK.

4. Create the second variable.

a. From the Resources tab, double-click Variable.

b. Configure the variable as follows.

ValueField

vInvoiceIdUnique Name

ID of the invoice to which the flow adds the new line item. A
custom button on the Invoice detail page launches the flow and
passes the invoice ID into this variable.

Description

TextData Type

Input Only

This option lets the variable be set when the flow is launched by a custom button.

Input and Output

c. Click OK.

5. Click Explorer to verify the variables are saved.

64

Step 1: Add Flow VariablesAdd App Logic with Clicks, Not Code

6. Save the flow.

a. Click Save.

b. For Name, enter Add Line Item from Invoice and Update Stock Quantity.

Unique Name is automatically populated based on this entry.

c. For Type, select Flow.

d. Click OK.

Ignore any activation warnings for now.

Step 2: Add a Form Screen
A screen can use form-style fields to gather data—in this case, line item information—from the flow user.

1. From the Palette tab, drag the Screen onto the canvas.

The Screen overlay opens with the General Info tab selected.

2. For the Name, enter Get Line Item Info From User.

Unique Name is automatically populated based on this entry.

3. Add a field for the Line Item Number.

a. From the Add a Field tab, double-click Textbox.

A textbox field appears in the preview pane on the right side of the Screen overlay.

b. Click [Textbox] in the preview pane.

c. On the Field Settings tab, configure the field as follows.

ValueField

Line Item Number

Unique Name is automatically populated based on this entry.

Label

1Default Value

4. Add a field for the Merchandise.

a. From the Add a Field tab, double-click Dropdown List.

A drop-down list field appears in the preview pane.

b. Click [Dropdown List] in the preview pane.

c. On the Field Settings tab, configure the field as follows.

65

Step 2: Add a Form ScreenAdd App Logic with Clicks, Not Code

ValueField

Merchandise

Unique Name is automatically populated based on this entry.

Label

TextValue Data Type

d. In the Choice Settings section, click the drop-down arrow then CREATE NEW > Dynamic Record Choice.

The Dynamic Record Choice overlay appears.

5. Create the dynamic record choice resource, which at runtime dynamically populates the Merchandise field with choice options,
each of which represents a Merchandise record in the database.

a. Enter the following values.

ValueField

dcMerchandiseUnique Name

TextValue Data Type

Merchandise__cCreate a choice for
each

b. Set the filter criteria so that the dynamic record choice returns only the merchandise that have items in stock.

ValueField

Quantity__cField

greater thanOperator

66

Step 2: Add a Form ScreenAdd App Logic with Clicks, Not Code

ValueField

0Value

c. Set the following fields so that the choices are displayed using the Name in each Merchandise record, sorted in alphabetical
order. Also, we want the choice to store the ID of the user-selected Merchandise record.

ValueField

NameChoice Label

IdChoice Stored Value

Name

Ascending

Sort Results by

d. Save the quantity in stock from the user-selected merchandise record to the flow variable we already created.

ValueField

Quantity__cField

{!vQuantityAvailable}Variable

e. Click OK.

The Dynamic Record Choice overlay closes, and the Screen overlay appears.

6. Add a field to capture the quantity ordered in the line item.

a. From the Add a Field tab, double-click Number.

A number field appears in the preview pane on the right side of the Screen overlay.

b. Click [Number] in the preview pane.

c. On the Field Settings tab, configure the field as follows.

ValueField

Quantity Ordered

Unique Name is automatically populated based on this entry.

Label

0Scale

7. Add a field to capture the unit price of the merchandise.

a. From the Add a Field tab, double-click Currency.

b. Click [Currency] in the preview pane.

67

Step 2: Add a Form ScreenAdd App Logic with Clicks, Not Code

c. On the Field Settings tab, configure the field as follows.

ValueField

Unit Price

Unique Name is automatically populated based on this entry.

Label

2Scale

The preview pane on the Screen overlay should now include four fields.

8. Click OK.

9. Save the flow.

a. Click Save.

b. Ignore the activation warnings for now.

c. Click OK.

Step 3: Add a Record Create Element
Now that the flow can contain all the data required to create a Line Item record, let’s add a Record Create element to do just that.

1. From the Palette tab, drag the Record Create onto the canvas.

2. For the Name, enter Create Line Item.

Unique Name is automatically populated based on this entry.

3. For the Create field, enter Line_Item__c.

4. Set the fields in the record using values from flow variables and screen fields.

a. Click Add Row until you have five assignment rows.

b. Set the fields and values as follows.

68

Step 3: Add a Record Create ElementAdd App Logic with Clicks, Not Code

ValueField

{!vInvoiceId}Invoice__c

{!Merchandise}Merchandise__c

{!Line_Item_Number}Name

{!Quantity_Ordered}Quantity__c

{!Unit_Price}Unit_Price__c

5. Click OK.

The Screen and Record Create elements now appear on the canvas.

6. Connect the two elements by dragging the node at the bottom of the Screen element onto the Record Create element.

The node doesn’t move, but a connector line appears as you drag from one node to another element.

7. Hover over the Screen element and click .

This identifies which element to execute first when the flow runs.

8. You can drag the elements to position them as you wish.

What really matters is that the connectors link the elements together so that the flow executes them in the correct order, starting
with the identified start element.

9. Click Save.

Notice that the activation warnings no longer appear because we set the start element and linked the elements together.

Step 4: Add a Record Update Element
Now let’s add a Record Update element to update the relevant Merchandise record, reducing the quantity available by the quantity
ordered in the line item.

1. From the Palette tab, drag the Record Update onto the canvas.

2. For the Name, enter Decrement Available Stock.

Unique Name is automatically populated based on this entry.

69

Step 4: Add a Record Update ElementAdd App Logic with Clicks, Not Code

3. For the Update field, enter Merchandise__c.

4. Set the filter criteria so that the flow updates only the Merchandise record associated with the line item.

ValueField

IdField

equalsOperator

{!Merchandise}Value

5. In the Field column for updating record fields, enter Quantity__c.

6. In the Value column, click the arrow and select CREATE NEW > Formula.

7. Configure the formula to subtract the quantity ordered in the line item from the quantity of Merchandise.

ValueField

fDecrementAvailableStockUnique Name

NumberValue Data Type

0Scale

{!vQuantityAvailable} - {!Quantity_Ordered}Formula text box

8. Click OK.

The Formula overlay closes, and the Record Update overlay appears.

70

Step 4: Add a Record Update ElementAdd App Logic with Clicks, Not Code

9. Click OK.

10. Drag the node from the bottom of the Record Create element onto the Record Update element to connect them.

11. Click Save.

Step 5: Add a Confirmation Screen
The flow is complete enough to do the job, but let’s add a screen to let the flow user know that the flow has finished.

1. From the Palette tab, drag the Screen onto the canvas.

The Screen overlay opens with the General Info tab selected.

2. For the Name, enter Done.

Unique Name is automatically populated based on this entry.

3. From the Add a Field tab, double-click Display Text.

4. Click [Display Text] in the preview pane.

5. On the Field Settings tab, configure the field as follows.

ValueField

confirmation_messageUnique Name

Thank you.

Your line item has been added to the invoice, and the available
quantity of merchandise has been updated.

text box

71

Step 5: Add a Confirmation ScreenAdd App Logic with Clicks, Not Code

6. Click OK.

7. Drag the node from the bottom of the Record Update element onto the new Screen element to connect them.

8. Click Save.

9. Click Close.

The flow detail page displays the flow URL. You’ll need this later when you create the custom button for launching this flow.

72

Step 5: Add a Confirmation ScreenAdd App Logic with Clicks, Not Code

Step 6: Add a Custom Button
Now that we have a flow, let’s add a custom button so that users can launch the flow from the invoice detail page. The button will:

• Launch the flow specified by the flow URL. You can find the flow URL on the flow detail page.

• Pass the relevant invoice ID into a flow variable.

• Set the flow finish behavior so that when the flow user clicks Finish, the browser returns the user to the relevant invoice detail page.

1. Create the custom button for the Line Item custom object.

a. From Setup, enter Objects in the Quick Find box, select Objects, then select Line Item.

b. In the Buttons, Links, and Actions related list, click New Button or Link.

c. Define the custom button.

ValueField

Add Line Item and Update Stock Qty

The Name is automatically populated based on this entry.

Label

List ButtonDisplay Type

Display in existing window without sidebar or headerBehavior

URLContent Source

/flow/Add_Line_Item_from_Invoice_and_Update_Stock_Quantity
?vInvoiceId={!Invoice__c.Id}&retURL=/{!Invoice__c.Id}

URL text box

73

Step 6: Add a Custom ButtonAdd App Logic with Clicks, Not Code

d. Click Save.

e. Click OK.

2. Add the custom button to the Invoice page layout.

a. From Setup, enter Objects in the Quick Find box, select Objects, then select Invoice.

b. In the Page Layouts related list, click Edit for the Invoice Layout.

c. Click for the Line Items related list.

d. Expand the Buttons section.

e. Under Available Buttons, select Add Line Item and Update Stock Qty.

f. Click .

The button name now appears under Selected Buttons.

74

Step 6: Add a Custom ButtonAdd App Logic with Clicks, Not Code

g. Click OK.

3. Verify that the button appears in the preview area for the Line Items related list.

4. Click Save.

Step 7: Try Out the App
Now try out the revised app and see the flow in action.

1. To make sure you get real results when you try the app, configure an existing Merchandise record to have a known starting quantity.

a. Click the Merchandise tab.

b. Click Desktop.

c. Click Edit.

d. Set the Quantity to 1000.

e. Click Save.

Now when we try out the flow, we can easily verify that the merchandise quantity is updated correctly.

2. Click the Invoices tab and either create a new invoice or edit an existing one.

3. Click the Add Line Item and Update Stock Qty custom button you just created.

75

Step 7: Try Out the AppAdd App Logic with Clicks, Not Code

4. To see results on the invoice detail page, enter the following values for the line item.

ValueField

11Line Item Number

DesktopMerchandise

100Quantity Ordered

1000Unit Price

5. Click Next and then Finish.

6. Verify that the line item correctly appears on the invoice detail page.

7. Click the Merchandise tab.

8. Click Desktop.

9. Verify that the Quantity changed from 1000 to 900.

Congratulations! You’ve successfully updated your inventory. But what happens if an error occurs? The standard behavior is for the flow
to email the organization administrator a generic message, but you can modify the flow to also immediately notify the user. This is
covered in the next, optional, tutorial.

76

Step 7: Try Out the AppAdd App Logic with Clicks, Not Code

Step 8: Add a Fault Screen
If an error occurs while the flow is interacting with the database, the flow displays a generic unhandled fault message. The system sends
the organization administrator an email with information to help identify the issue. You can also set up fault paths to a screen that
displays this information to the flow user. Instead of waiting for a system message to reach your email account, you can view the
information in the flow and immediately fix the problem.

1. Reopen the flow if necessary.

2. From the Palette tab, drag the Screen onto the canvas.

The Screen overlay opens with the General Info tab selected.

3. For the Name, enter Fault Screen.

Unique Name is automatically populated based on this entry.

4. From the Add a Field tab, double-click Display Text.

5. Click [Display Text] in the preview pane.

6. On the Field Settings tab, configure the field as follows.

ValueField

fault_messageUnique Name

Sorry, an error occurred in the flow.

For help, provide your flow administrator with the following
information: {!$Flow.FaultMessage}

text box

7. Click OK.

8. Connect both the Record Create and Record Update elements to the fault screen.

a. Drag the node from the bottom of the Record Create element onto the new Screen element.

b. Drag the node from the bottom of the Record Update element onto the new Screen element.

Notice that these new connectors have “FAULT” labels.

77

Step 8: Add a Fault ScreenAdd App Logic with Clicks, Not Code

9. Click Save.

10. Click Close.

Now, if the flow encounters a validation rule or error, the flow user sees a meaningful error message instead of the generic unhandled
fault message.

If your flow is already working fine, you can still test the fault screen by entering a value that would fail the validation rule you created
in an earlier tutorial. Specifically, while running the flow, enter a Quantity Ordered value that’s obviously greater than the quantity
available for the merchandise.

78

Step 8: Add a Fault ScreenAdd App Logic with Clicks, Not Code

ANALYZE DATA WITH REPORTS AND DASHBOARDS

Level: Beginner; Duration: 30–40 minutes

How great would it be to get a report in your inbox every morning that tells you how much stock you have for each item in your
warehouse? Or perhaps you’d like to see that information displayed as a graphical chart whenever you access the app on your phone?

This series of tutorials introduces you to reports and dashboards, or what we refer to as Salesforce Reports and Dashboards. Once you’ve
defined your reports, you can place them on a dashboard, so you can see all your key metrics at a glance. Salesforce Reports and
Dashboards lets you see what’s important to you, exactly how and where you want to see it.

Create a Report

Level: Beginner; Duration: 15 minutes

The Warehouse app you created with the App Quick Start wizard includes a Reports tab, where you can create, edit, run, and schedule
reports. Start by creating a simple report that tells you how much stock you have for each item in your warehouse. Then you’ll use
groupings and filters to get the most out of the data in your report.

Try out buckets for on-the-fly grouping, and experiment with showing your report data graphically as a chart. And once you’ve got charts
mastered, take a look at how you can provide users with valuable context by embedding charts in record detail pages.

Step 1: Create a Simple Report
In this step, you create a simple tabular report that shows the merchandise in your warehouse and how many pieces of each are in stock.
Tabular reports present data in simple rows and columns, much like a spreadsheet. They can be used to show column summaries, like
sum, average, maximum, and minimum.

1. From the Reports tab, click New Report.

2. In the Quick Find box, enter Merchandise, and in the Other Reports folder, choose Merchandise.

3. Click Create.

4. In the report builder, notice that the Merchandise Name field is already there. You only need one more field: the quantity of
each item. From the Fields pane, drag Quantity onto the preview.

79

5. Click Save, and give your report a meaningful name, such as Merchandise in Stock.

6. In the Report Folder drop-down list, select Unfiled Public Reports, so everyone can access it. (If you didn’t want this report to be
accessible to everyone, you’d create a folder and give different people different levels of access to it. More on that later.)

7. Click Save and Run Report.

That’s it. Your new report is ready to go!

You can get fancy with reports, but that's all you need from this one. And as you'll soon see, even this simple report gives you a lot of
functionality.

• Use the Summarize Information by drop-down list to summarize the report based on any field on the Merchandise object. For
example, you could summarize on Owner Name to see who entered each piece of merchandise, as well as the count.

• Use the Show drop-down list specify whether you want to see just your merchandise, your team's merchandise, or all merchandise.

80

Step 1: Create a Simple ReportAnalyze Data with Reports and Dashboards

• In the Time Frame section, you can choose to run this report based on the created, modified, or last activity date, as well as choose
the date range for the data you want to see.

• Click Run Report, and choose to run the report now or on some future date. If you choose the latter, it takes only a few more clicks
to have that report in your inbox every day—or however often you want it.

• If you’d rather see a summary than a bunch of details, click Hide Details.

• Click Customize to make changes to the report, and you'll return to the familiar drag-and-drop interface you used to create the
report.

• And finally, you can export the report as a printed document, spreadsheet, or CSV file by clicking Export Details.

Tell Me More....
• Click the column headers to toggle between ascending and descending order. The Grand Totals indicates the record count as well

as the summaries you chose. Click Customize to make additional changes to this report.

• You can click through to the data records that are being reported on, a characteristic found in all reports on Salesforce. For example,
click the name of any merchandise record listed in the report to view its detail page.

• A report folder's sharing settings determine who can do what with reports in that folder. Click next to the folder in the Reports
tab and click Share. You can give people three levels of access: Viewer, Editor, or Manager. For more information, see “Share a Report
or Dashboard Folder” in the Salesforce Help.

Step 2: Get More Information Out of Your Report
The report builder gives you a lot of ways to view your data. Viewing data in groups usually helps make sense of what you’re looking at.
In this case, grouping by item, price, or total units sold can be helpful.

First we’ll turn our simple tabular report into a slightly fancier summary report, and then we’ll give it a grouping.

1. Click Customize.

2. The default format is tabular, but we want a summary report. Click Tabular Format and choose Summary instead.

3. Find and drag the Price field to your report.

4. Click next to Price, click Summarize this Field, select Average, and then click Apply.

5. Click next to Quantity, click Summarize this Field, select Sum, and then click Apply.

6. Select the Merchandise Name field (either from Fields or Preview panel) and drag it to the area labeled Drop a field here to
create a grouping. This aggregates data by the unique merchandise item.

The report is now grouped by merchandise, and it includes the sum of quantity and the average price for each level.

Tell Me More...
Try adding a cross filter from the Add drop-down list in the Filters pane. A cross filter lets you filter on the report's child objects using a
simple with or without condition. To learn more about cross filters, watch Using Cross Filters in Reports.

Step 3: Add Buckets to Your Report
Bucketing lets you quickly group report records without creating a formula or a custom field. For example, say you also want to group
by quantity into ranges. To do this, create a bucket field on Quantity and define the ranges.

81

Step 2: Get More Information Out of Your ReportAnalyze Data with Reports and Dashboards

http://salesforce.vidyard.com/watch/FaYa4ASZ7if9QA4dZmSwOQ

First, create a bucket field based on Quantity with ranges for small, medium, and large. You'll use the bucket field to create the
grouping.

1. Click on Quantity and click Bucket this Field.

2. Enter a bucket field name, Quantity Range.

3. Define ranges as Small (500), Medium (between 500–1000), and Large (greater than 1000).

4. Click OK.

5. Grab the Quantity Range bucket field that's already on the report and make it the first-level grouping by dragging it onto the drop
zone above Merchandise Name.

Now the report shows data grouped in two levels—first, by quantity range (small, medium or large), and second, by merchandise name.

82

Step 3: Add Buckets to Your ReportAnalyze Data with Reports and Dashboards

Tell Me More....
You can filter a bucket field just like other fields in the report. For example, set a filter for Quantity Range not equal to
Small to see only merchandise with quantities in the medium or large range.

To learn more about bucket fields, watch Getting Started with Buckets.

Step 4: Show Your Report Data as a Chart
It’s often a good idea to give users a visual way to understand the data in your report. Let's add a combination chart to our report now.

1. In the Preview pane, click Add Chart to create a chart to represent your data. In the Chart Editor that appears, click the vertical bar
chart.

2. In the Y-Axis drop-down list, leave Sum of Quantity selected.

3. In the X-Axis drop-down list, select Merchandise: Merchandise Name. Notice the bucket field, Quantity Range, is also available, as
there are two groupings.

4. Select Plot additional values.

5. In the Display drop-down list, select Line.

6. Select Use second axis.

7. In the Value drop-down list, select Average of Price.

8. Click OK, then Save.

The combination chart shows merchandise in stock (bars) against average price (line).

83

Step 4: Show Your Report Data as a ChartAnalyze Data with Reports and Dashboards

http://salesforce.vidyard.com/watch/PHKaSARJY--nhdLAbp0UtA

Step 5: Embed the Report Chart in a Record Page
There are many ways to share reports once you’ve created them. One of the best is to embed the report’s chart on a record detail page,
where users can see it as they do their work: no need to jump over to the Reports tab. In Modify a Page Layout on page 32, you learned
how to customize what's on the detail page for a particular type of record. Now we’ll do that for merchandise records.

1. From Setup, enter Objects in the Quick Find box, then select Objects, then choose Merchandise.

2. Under the Page Layouts related list, click Edit next to Merchandise Layout.

3. Click Report Charts in the palette.

4. Drag the Section element onto the preview pane and place it above the Mobile Cards area. Enter Charts for the section name,
and select 1-column for the layout.

5. In the Quick Find box, type the name of the report and click to find and select the report chart. (You can add two if you want.)
You can browse up to 200 recently viewed reports. But you only see reports that already have charts.

6. Drag the Merchandise In Stock report chart onto the layout.

7. Click Save and go look at a merchandise record. It will look something like:

84

Step 5: Embed the Report Chart in a Record PageAnalyze Data with Reports and Dashboards

Now users can quickly see how much merchandise is in stock, without leaving their record detail page! Notice that, by default, the chart
is automatically filtered to show data that’s relevant to the particular record type you’re looking at. You can set different filters back on
the page layout. Just click on the chart to customize it.

To learn more about embedding report charts on record pages, watch Embedding Charts Anywhere.

Tell Me More....
Salesforce provides the Reports and Dashboards REST API that lets you access your data remotely and build your own apps and
visualizations. There’s an API resource for almost anything you can do with reports through the standard web interface. For example,
say you’ve used Visualforce to build a custom app, and you want to give that app a Reports tab. Or your users need a special kind of
chart that isn’t one of the out-of-the-box report builder options.

For a quick start on using the Reports and Dashboards REST API, see the Salesforce Reports and Dashboards REST API Developer Guide.

Create a Dashboard

Level: Beginner; Duration: 15 minutes

Dashboards in Salesforce are like a dashboard in your car, showing you important information at a glance. Dashboards can show data
in charts, gauges, tables, metrics, or Visualforce pages. Naturally, you can customize dashboards to show exactly what you want.

In this tutorial, you create a new dashboard that's powered by the report you created in the previous tutorial.

85

Create a DashboardAnalyze Data with Reports and Dashboards

http://salesforce.vidyard.com/watch/lEhGPwDnI3lNn1Ck9uCVJw/
https://resources.docs.salesforce.com/202/latest/en-us/sfdc/pdf/salesforce_analytics_rest_api.pdf

Step 1: Create a New Dashboard
Create a new dashboard for the Warehouse app that's powered by the Merchandise in Stock report that you’ve created.

1. Click the Reports tab and then New Dashboard.

2. Click the editor's Components tab, then drag the Vertical Bar Chart component and drop it in the first column of the new dashboard.

3. Now click the editor's Data Sources tab, and under Reports > Unfiled Public Reports, drag your report and drop it on top of the
new Vertical Bar Chart component that's in the dashboard.

Step 2: Add a Pie Chart Component
That was so easy. Why not play around with adding a different type of dashboard component, just for fun?

1. Repeat the previous steps, but this time use a Pie Chart component in the second column.

2. Then click Remove this column () in the header of the third column to remove the unused third column from the layout. When
you are finished, the dashboard preview should look similar to the following.

86

Step 1: Create a New DashboardAnalyze Data with Reports and Dashboards

3. Click Save, name the dashboard Merchandise Overview, and click Save.

Step 3: Try Out the App
1. Close the editor, and in the pop-up dialog, choose Save and Close. The dashboard then runs automatically when you leave the

editor. Your dashboard should look similar to the following image.

2. To access the dashboard at any time, click the Reports or Dashboard tab in the Warehouse app.

Tell Me More....
• When you set a running user for a dashboard, it runs using the security settings of that single, specific user. All users with access to

the dashboard see the same data, regardless of their own personal security settings. To set the running user, click next to the
View dashboard as field.

87

Step 3: Try Out the AppAnalyze Data with Reports and Dashboards

• Dashboards can be updated either manually or on a schedule, and they can be delivered through email and mobile.

• A dashboard won't automatically refresh unless it is set to do so. Each time you view a dashboard, it indicates in the upper-right
corner when it was last refreshed. To update the data in the dashboard, click Refresh.

• Try adding a filter when editing the dashboard by clicking Add Filter. A filter lets you see different views of dashboard data based
on filter conditions. You can add up to three filters per dashboard with up to ten conditions on a filter. Instead of filtering at the
report level, you directly manipulate dashboard data.

Step 4: Access Dashboards from Your Mobile App
Mobile dashboards give you the fastest and clearest way to see what’s important to you at a glance, on the go.

1. In Salesforce1, tap to open the navigation menu.

2. Tap Dashboards, and from the list of recent dashboards, tap Merchandise Overview.

3. Dashboards look and navigate a bit different on a mobile device. To switch columns, swipe left and right.

4. Tap a component to see the details of a component.

5. In the component view, tap data points to see their values highlighted.

Unleash Your Reports with the Salesforce Reports and Dashboards
REST API

Level: Intermediate; Duration: 40 minutes

You’ve learned how to do some pretty sophisticated things with reports in this workbook so far. But what if you need more? What if
your users can’t live without a custom app specially tailored to their own unique business requirements?

88

Step 4: Access Dashboards from Your Mobile AppAnalyze Data with Reports and Dashboards

No problem! If you can code a little, or have access to someone who can, Salesforce provides an API that can handle almost anything
you can do with reports through the standard web interface.

For example, say you’ve used Visualforce to build a custom app, and you want that app to display report data. Or your users need a
special kind of chart that isn’t one of the out-of-the-box options when they build a dashboard. In this tutorial, we’ll take a look at some
ways you might give your users what they want.

Note: This is just a brief overview to show you some of the cool kinds of things you can do with the Salesforce Reports and
Dashboards REST API. For full instructions and a detailed reference, check out the Salesforce Reports and Dashboards REST API
Developer Guide.

To use the API, you have your app send a request to a URL that’s based on the instance where your Salesforce organization is running.
For example, if your organization is hosted on na1.salesforce.com, you could get a list of all the reports you have by sending
a request to https://na1.salesforce.com/analytics/reports.

Here are the basic operations you can undertake with the Salesforce Reports and Dashboards REST API. We’ll be using some of these in
the next few steps.

Request
Body

MethodURLAction

N/AGET/analytics/reportsList all recently used, supported
reports.

N/AGET/analytics/reports/<reportId>/describeRetrieve report, report type, and
related metadata for the specified
report.

N/AGET/analytics/reports/<reportId>Run the specified report.

Report
Metadata

POST/analytics/reports/<reportId>Run the specified report with
dynamic filters.

N/APOST/analytics/reports/<reportId>/instancesRun the specified report
asynchronously.

Report
Metadata

POST/analytics/reports/<reportId>/instancesRun the specified report
asynchronously with filters.

N/AGET/analytics/reports/<reportId>/instancesList the 200 most recent run
instances of the specified report.

N/AGET/analytics/reports/<reportId>/instances/<instanceId>Fetch the specified run instance of
the specified report.

N/AGET/analytics/dashboardsGet a list of recently used
dashboards.

N/AGET/analytics/dashboards/<dashboardID>Retrieve metadata, data, and status
for the specified dashboard.

N/APUT/analytics/dashboards/<dashboardID>Trigger a dashboard refresh.

N/AGET/analytics/dashboards/<dashboardID>/statusGet the status for the specified
dashboard.

89

Unleash Your Reports with the Salesforce Reports and
Dashboards REST API

Analyze Data with Reports and Dashboards

https://resources.docs.salesforce.com/202/latest/en-us/sfdc/pdf/salesforce_analytics_rest_api.pdf
https://resources.docs.salesforce.com/202/latest/en-us/sfdc/pdf/salesforce_analytics_rest_api.pdf

All Salesforce Reports and Dashboards REST API resources are accessed using:

• A base URI for your company (for example, https://na1.salesforce.com)

• Version information (for example /services/data/v29.0/analytics)

• A named resource (for example, /reports)

Put together, an example of the full URL to the resource is:

https://na1.salesforce.com/services/data/v29.0/analytics/reports/

Step 1: Run a Report Synchronously
If speed is what you need, synchronous execution is the way to go. Your report runs afresh every time the user looks at it, and feeds it
right back to your app. If your users need to track hour-by-hour changes, you may want to run your report synchronously.

Let’s get acquainted with the Salesforce Reports and Dashboards REST API by running our Merchandise report. We’ll run it synchronously
this time, and without any filters.

• Kick off the report by sending a GET command with the ID of the report you want to run.

The command will look like this:

curl -s -H 'Authorization: OAuth token ...'
https://na1.salesforce.com/services/data/v29.0/analytics/reports/00OD0000001ZbP7MAK

Note: We’re using NA1 as the instance for this example. Substitute the instance where your Salesforce organization is hosted.

You've just run your first report via the API! Don't worry about reading the results yet. You'll get to that in the next few pages.

Step 2: Run a Report Asynchronously
Running a report asynchronously means sending the request, then getting the results back at some later time. There are a few advantages
to running reports asynchronously through the API.

• When you run asynchronously, the results are kept around in a cache that you can use any time during the next 24 hours. And the
API commands for reusing cached results don’t count against the 1200-requests-per-hour limit. (General API request limits still count,
though.)

• Asynchronous reports have a longer time-out interval. So if you know your report is looking at a very large data set and you don’t
want to risk timing out, you might want to run asynchronously.

• You can run up to 1200 asynchronous reports per hour, which is over twice the limit for synchronous reports. So if you expect a lot
of users to be looking at your app, asynchronous runs might be for you.

1. Kick off your asynchronous report by sending a POST command to
https://<instance>//analytics/reports/<reportId>/instances.

The command will look like:

curl -s -H 'Authorization: OAuth token ...'
https://na1.salesforce.com/services/data/v29.0/analytics/reports/00OD0000001ZbP7MAK/instances
-X POST -d ''

2. To get the results of your asynchronous run, poll the report run instance with GET.

90

Step 1: Run a Report SynchronouslyAnalyze Data with Reports and Dashboards

A specific asynchronous run of a report is called an instance. Each instance has an ID. To get the data set that an instance contains,
you send a request to the system, identifying the instance you want by its ID. This is called polling the instance. If the report has
finished running, the response to your poll request is the data set you asked for. (If it’s not finished, you get an “in progress” response.)

curl -s -H 'Authorization: OAuth token ...'
https://na1.salesforce.com/services/data/v29.0/analytics/reports/00OD0000001ZbP7MAK/instances/instance_id

Now we've run a report synchronously and asynchronously. Next, we'll make our data more useful by narrowing down our results.

Step 3: Filter Report Data
A report is most useful when you use filters to narrow down the data it returns.

You learned how to set filters on the fly, using the standard web interface, in Create a Report on page 79. You can filter a report via the
API as well. The API has commands to add filters, edit them, or remove them.

For example, say you’ve just run a saved report that is filtered to show only items that you have more than a dozen of. Now you want
to filter for smaller quantities, without changing the saved report. To do this, send back the report metadata object with edited filters.

1. Here’s some typical metadata that your report run might have returned:

'{reportMetadata":{"name":"MerchandiseReport","id":"00OD0000001ZbP7MAK","developerName":"MerchandiseReport",
"reportType":{"type":"MerchandiseList","label":"Merchandise"},"reportFormat":"MATRIX",
"reportBooleanFilter":null,"reportFilters":[{"column": "QUANTITY",
"operator":"greaterThan",
"value":"12"}],"detailColumns":["MERCHANDISE.NAME","CREATED_DATE","QUANTITY"],
"currency":null,"aggregates":["RowCount"],"groupingsDown":[{"name":"CONTACT2.COUNTRY_CODE",
"sortOrder":"Asc","dateGranularity":"None"}],"groupingsAcross":[{"name":
"OWNER","sortOrder":"Asc","dateGranularity":"None"}]}}'

2. Change the filter and run the report. It will look something like this, with the edited filter shown in bold type. (This example is
synchronous, but an asynchronous run works the same way.)

curl -s -H 'Authorization: OAuth token ...'
https://na1.salesforce.com/services/data/v29.0/analytics/reports/00OD0000001ZbP7MAK -X
POST -d '{reportMetadata":{"name":"MerchandiseReport","id":"00OD0000001ZbP7MAK",
"developerName":"MerchandiseReport","reportType":{"type":"CaseList","label":"Cases"},
"reportFormat":"MATRIX","reportBooleanFilter":null,"reportFilters":[{"column": "QUANTITY",
"operator":"lessThan", "value":"12"}],
"detailColumns":["MERCHANDISE.NAME","CREATED_DATE","QUANTITY"],
"currency":null,"aggregates":["RowCount"],"groupingsDown":[{"name":"CONTACT2.COUNTRY_CODE",
"sortOrder":"Asc","dateGranularity":"None"}],"groupingsAcross":[{"name":"OWNER",
"sortOrder":"Asc","dateGranularity":"None"}]}}'

You’ve just run a filtered report and retrieved the data. You’re ready to do some cool tricks with it! For some ideas, along with full
instructions and detailed reference information, check out the Salesforce Reports and Dashboards REST API Developer Guide.

Step 4: Find, Show, and Refresh Dashboards
Many users interact with reports mainly through dashboards. You can use the Reports and Dashboards REST API to access and refresh
dashboards just as easily as you can with reports.

For example, suppose your users are tired of paging through screens in search of the dashboards they need. You can use the Reports
and Dashboards REST API to let them choose from among the dashboards they’ve looked at recently.

91

Step 3: Filter Report DataAnalyze Data with Reports and Dashboards

https://resources.docs.salesforce.com/202/latest/en-us/sfdc/pdf/salesforce_analytics_rest_api.pdf

1. To help your users find their dashboards easily, use a GET request on the Dashboard List resource to retrieve a list of recently used
dashboards.

/services/data/v31.0/analytics/dashboards

For each dashboard, the Dashboard List resource sends you back something like this. The URL handle stores the status or results for
the dashboard. The list is sorted by the date when the dashboard was last refreshed.

[{
"id" : "01ZD00000007QeuMAE",
"name" : "Adoption Dashboard",
"statusUrl" : "/services/data/v31.0/analytics/dashboards/01ZD00000007QeuMAE/status",
"url" : "/services/data/v31.0/analytics/dashboards/01ZD00000007QeuMAE"

}]

2. You may want to show users their dashboard data in different ways, depending on the platform or device where they’re using your
app. You can pull the data from the dashboard with a GET request to the Dashboard Results resource.

/services/data/v31.0/analytics/dashboards/01ZD00000007S89MAE

What you get back is the actual data in the dashboard, plus its metadata (the dashboard ID, name, component metadata, and any
filters) and its refresh status. The result will look like this:

{
{
"componentData" : [{
"componentId" : "01aD0000000a36LIAQ",
"reportResult" : {
// Report result data omitted for brevity.

},
"status" : {
"dataStatus" : "DATA",
"errorCode" : null,
"errorMessage" : null,
"errorSeverity" : null,
"refreshDate" : "2014-04-10T20:37:43.000+0000",
"refreshStatus" : "IDLE"

}
}],
"dashboardMetadata" : {
"attributes" : {
"dashboardId" : "01ZD00000007S89MAE",
"dashboardName" : "Simple Dashboard",
"statusUrl" : "/services/data/v31.0/analytics/dashboards/01ZD00000007S89MAE/status",

"type" : "Dashboard"
},
"canChangeRunningUser" : false,
"components" : [{
"componentData" : 0,
"footer" : null,
"header" : null,
"id" : "01aD0000000a36LIAQ",
"properties" : {
"aggregateName" : "s!AMOUNT",
"maxRows" : null,

92

Step 4: Find, Show, and Refresh DashboardsAnalyze Data with Reports and Dashboards

"sort" : {
"column" : "TYPE",
"sortOrder" : "asc"

},
"visualizationProperties" : { },
"visualizationType" : "Bar"

},
"reportId" : "00OD0000001g2nWMAQ",
"title" : null,
"type" : "Report"

}],
"description" : null,
"developerName" : "Simple_Dashboard",
"filters" : [{
"name" : "Amount",
"options" : [{
"alias" : null,
"endValue" : null,
"id" : "0ICD00000004CBiOAM",
"operation" : "greaterThan",
"startValue" : null,
"value" : "USD 2000000"

}],
"selectedOption" : null

}],
"id" : "01ZD00000007S89MAE",
"layout" : {
"columns" : [{
"components" : [0]

}]
},
"name" : "Simple Dashboard",
"runningUser" : {
"displayName" : "Allison Wheeler",
"id" : "005D00000016V2qIAE"

}
}

}

3. If you’re concerned that users might not be seeing the latest data, you can refresh a dashboard remotely by sending a PUT Dashboard
Results request, specifying the dashboard you want to refresh by its ID.

/services/data/v31.0/analytics/dashboards/01ZD00000007S89MAE

The response contains the status URL for the refreshed dashboard:

{
"statusUrl" : "/services/data/v31.0/analytics/dashboards/01ZD00000007S89MAE/status"

}

93

Step 4: Find, Show, and Refresh DashboardsAnalyze Data with Reports and Dashboards

ENHANCE THE MOBILE EXPERIENCE WITH ACTIONS

Level: Beginner; Duration: 20–25 minutes

You’ve already seen how the functionality in your app is available from a mobile device. Indeed, you could say that every Salesforce
developer is a mobile developer! But so far, you’ve only exposed some data and customized the layout. What’s really awesome is when
you can provide users with custom mobile functionality that allows them to be highly productive on the go.

In this tutorial you create quick actions. Quick actions are split into two categories, global actions, and object-specific actions. Global actions
are used when you want to create something quickly from pretty much anywhere in the app. Object-specific actions are used when
you want to automatically associate what you’re doing with something else.

Quickly Create Records Using Global Actions

Global actions are for when you want to create something quickly from pretty much anywhere in the app. For example, imagine one of
your users works at a trade show and meets new people all day long. She needs a way to quickly add someone as a contact without
navigating to a record or associating this person with any other information. That’s what a global action is for: creating quick records
that they can follow up with later.

You can include global actions on page layouts for any supported object, and on global publisher layouts, too. In effect, this means you
can use a global action from anywhere.

The overall steps for creating a global action are:

1. Create the global action.

2. Choose which fields users see, and if possible predefine required field values.

3. Add the action to the global page layout.

Step 1: Create a Global Action
A global action can appear anywhere with a global publisher layout, so it’s useful for things that need to be done quickly, but not
necessarily completely.

1. In Setup, enter Actions in the Quick Find box, then select Global Actions.

Notice there are already a number of actions to choose from. You’ve seen some of these already in Salesforce1.

2. Click New Action.

3. For Action Type, leave Create a Record selected.

4. For Target Object, select Merchandise.

5. For Label, enter New Merch.

6. Click Save.

94

After saving, the action layout editor opens. Typically at this point you’d customize the fields that show up here, but there aren’t many
fields on this object, so it’s not necessary yet. Click Save.

Tell Me More....
• You created a custom label called New Merch, but you can also choose one of the generated labels by choosing from the Standard

Label Type drop-down list.

• At the bottom of the global action detail page, there’s a section for predefined values. If you predefine a required field, you don’t
need to display that field on the page. Predefining fields is also a great way to customize the mobile experience, and you’ll learn
about that in just a bit.

Step 2: Customize the Global Layout
Before the global action will show up in either the full Salesforce site or Salesforce1, you need to add it to the global publisher layout.

1. In Setup, enter Publisher Layouts in the Quick Find box, then select Publisher Layouts.

2. Next to Global Layout, click Edit.

3. In the editor, notice a number of items are in the Quick Actions in the Salesforce Classic Publisher section, such as Post, File, and New
Task. Drag the New Merch action into the left side of the Quick Actions in the Salesforce Classic Publisher section, between Post and
File.

4. Click Quick Save.

5. In the Salesforce1 and Lightning Experience Actions section, click override the predefined actions.

6. Click the Salesforce1 Actions category in the palette, and then drag New Merch into the Salesforce1 and Lightning Experience
Actions section so that it’s the second item in the list.

7. Click Save.

8. Try it out by opening Salesforce1. You see the New Merch action in the action bar.

95

Step 2: Customize the Global LayoutEnhance the Mobile Experience with Actions

Tell Me More....
• In Salesforce1, global actions appear in the action bar on pages to which the global publisher layout applies, such as the feed, groups,

and layouts that haven’t been overridden by another publisher layout.

• If you had placed the New Merch action first in the list, anyone using the full Salesforce site would see the expanded list of fields for
that action every time they opened Chatter. That could be an annoying use of space! So it’s better to locate actions that require a
lot of fields somewhere further down the line.

• Just as you can with regular page layouts, you can assign global publisher layouts to different user profiles. This lets different types
of users have different global actions.

Create Related Records with Object-specific Actions

Object-specific actions let users create records that are automatically associated with related records. The Warehouse app currently doesn’t
have a good use case for an object-specific action, so this example uses the Account and Case standard objects, which come in every
Developer Edition organization.

In this example, a mobile technician might want a way to create a new case while still on site with a customer. If you add a record create
action to the Account object with Case as the target object, the technicians can browse to the customer account record on their mobile
device, and log cases directly from there.

The overall steps for creating an object-specific action are:

1. Create the object-specific action.

2. Choose which fields users see. Predefine required field values where possible.

3. Add the action to one or more of that object’s page layout.

Step 1: Define an Object-Specific Action
For this scenario, you create an invoice that’s associated with an existing account.

1. From Setup, enter Accounts in the Quick Find box, then select Buttons, Links, and Actions.

2. Click New Action.

3. For Action Type, leave Create a Record selected.

4. For Target Object, select Case.

5. For Label, enter Create a Case, and then click Save.

The action layout editor opens, which is where you can customize the fields assigned to the action.

6. Remove the Status field from the layout by dragging it into the palette, and then click Save.

7. You get a warning message about a required field. Click Yes, because you’ll fix that next.

Tell Me More....
You just dragged a required field off the page layout. The platform gives you a warning message, and as well it should, users won’t be
able to create a case from the mobile action! The reason for removing that field will become clear in the next step, when you predefine
that field’s value.

96

Create Related Records with Object-specific ActionsEnhance the Mobile Experience with Actions

Step 2: Choose Fields and Predefine Field Values
Objects can have many fields, and so when a user creates a record for that object, it can result in a long list that takes up the screen space
and time that mobile users don’t have. So it’s important to choose which fields show up on the action layout. Additionally, you can
predefined field values, and then remove them from the action layout.

For this example, mobile technicians are already on site logging the case. Rather than require them to choose a status every time they
create an case, you can predefine the field value. Then you can remove the required field from the action layout. Whenever the Create
a Case action is used, the status will automatically be set.

1. From Setup, enter Accounts in the Quick Find box, then select Buttons, Fields, and Actions.

2. Click the Create a Case action you just created.

3. In the Predefined Values related list, click New.

4. From the Field Name drop-down list, select Status.

5. Set its specific value to Working, and then click Save.

Tell Me More....
Note that predefined values override default values. In the previous example, imagine that cases created on the full Salesforce site are
typically new, and so whenever a case is created there, the default value is set to “Open”. But when a new case is created from a mobile
device, it’s because there’s a mobile technician on site, and they are actually working on that case. New cases logged from the mobile
device overrides the default value and predefines it as “Working”. As you can see, not only do predefined field values free up screen
space, they can also be used to optimize for what people do when they are mobile.

Step 3: Customize an Object-Specific Layout
Before the action will show up in either the full Salesforce site or Salesforce1, it needs to be added to a page layout.

1. From Setup, enter Accounts in the Quick Find box, then select Page Layouts.

2. Next to Account Mobile Layout, click Edit.

This layout is the one you created earlier. Notice that the Salesforce1 and Lightning Experience Actions section is empty, and a
message is telling you that actions on this layout are predefined by Salesforce. You don’t want that. You want to customize the
actions on this layout to be pertinent to the work the mobile users need to do.

3. In the Salesforce1 and Lightning Experience Actions section, click override the predefined actions.

4. Click the Salesforce1 Actions category in the palette, and then drag Create a Case so that it’s the second item in the list.

A New Case item is also in the palette. The New Case item is a default action assigned to the Account object, but it’s not editable.
You don’t want this default action, because you created a custom Create a Case action.

5. Click Save. The new Create a Case action now shows up in the action bar on the Account record pages in Salesforce1 for all mobile
technicians.

6. Test it on your mobile device by navigating to an account.

7. On the detail page for an account, tap the Create a Case action.

You don’t see the required Status field for the case, but it’s there, and so is the association to this particular account.

97

Step 2: Choose Fields and Predefine Field ValuesEnhance the Mobile Experience with Actions

Tell Me More....
When you create object-specific layouts, keep in mind that only the first four actions in the list appear on the action bar in Salesforce1.

The rest of the actions are accessible from the action menu when users tap in the action bar.

98

Step 3: Customize an Object-Specific LayoutEnhance the Mobile Experience with Actions

SECURE YOUR SYSTEM

Level: Beginner; Duration: 35–40 minutes

The platform makes it easy for you to implement a security policy of least privilege for all types of users. Effectively, each user should
only have the privileges they need to get the job done. Every organization is locked down tightly when you first provision it. These
tutorials teach you how to use various features such as users, profiles, permission sets, and roles to progressively open up access so that
just the right users have access to just the right data at just the right time.

Here’s a preview of how it’s done.

1. Create profiles and permission sets — Identify the different types of users you need for your application, based on the different
functions each type needs to access. Create a base level profile for each type of user such that each profile has only the permissions
required for that type of user to perform these functions. Then create permission sets to handle exceptions—situations in which a
user may need a few more permissions.

2. Create users — For each person who needs app and database access, create a user, assigning the user to the appropriate profile
and permission sets.

3. Set sharing models — For each object, set the organization-wide default record sharing model to determine whether the records
that each user owns are public or private.

4. Share private records — Use roles, groups, record sharing rules, and other means to share private records with other users.

Prerequisites

Browser Switching
This tutorial requires you to switch between users. To do that, it’s easier to leave one browser open as your admin/developer (the
login you’ve been using so far), and use a different browser for other users. For example, if you are using Safari for your admin/developer
login, use a different browser such as Mozilla Firefox for the Manager and Salesperson users. That way, you can simply switch between
different browsers to configure security and then test record access without having to log out and log in repeatedly. If you’re using
Google Chrome, you can also use Chrome incognito to log in as multiple users in the same browser.

Create a Profile and Permission Set

Duration: 5–10 minutes

Before creating users, it’s best to create one or more profiles and permission sets. Profiles and permissions sets are collections of functional
permissions and settings that control what a user can do. For example, profiles and permission sets control:

• System-level access, including time- and IP-based login restrictions as well as permissions that apply to different functions within
an organization such as the ability to manage users

• Object-level access, including permissions to create, update, and delete records for each object in the database

99

• Field-level access, including the ability to read or edit fields in objects

• Access to invoke Apex classes and custom logic

So what's the difference between a profile and a permission set? Users can have exactly one profile, but could have a number of permission
sets. Here’s how that might work; suppose you need to implement a security policy that has many types of users with similar yet varying
privilege requirements. Rather than building and managing many profiles that differ only slightly, it’s more efficient to build one profile
to manage the common permissions and then use permission sets to manage other specific sets of permissions.

Note: Before you get started creating profiles and permission sets, be aware that the available permissions you can configure for
a profile or permission set depend on the user license you associate with it.

Step 1: Create a Profile
Complete the following steps to create a base profile for the Warehouse app:

1. From Setup, enter Profiles in the Quick Find box, then select Profiles.

2. Next to Standard Platform User click Clone.

3. Name the new profile Warehouse App User, then click Save.

Tell Me More....
The profile you clone is important to consider because it determines what type of user license to use. For example, in a DE org, you have
three Salesforce Platform User licenses that these tutorials intend to use.

Step 2: Edit a Profile
Now edit the new profile so that it delivers the common permissions that all types of Warehouse app users need to do their work.
Specifically, every Warehouse app user needs to be able to:

• Switch to the Warehouse app

• See the Invoices tab, but not necessarily the Merchandise tab

• Read Merchandise records because Merchandise is a lookup object

Complete the following steps to create the baseline profile for Warehouse app users:

1. On the Warehouse App User detail page, click Edit.

2. In the Custom App Settings section, select Visible and Default for the Warehouse app.

3. In the Tab Settings section, set Invoices to Default On and Merchandise to Tab Hidden.

4. In the Custom Object Permissions section, enable Read for the Merchandise object (see the following image) and then click Save.

100

Step 1: Create a ProfileSecure Your System

Step 3: Create the Manager Permission Set
In this step, you are going to configure security for two different types of Warehouse app users: managers and sales people. Both types
of users can use the Warehouse App profile for their base permissions, but need different privileges thereafter. To handle this requirement,
create two different permission sets.

Use the following steps to create the Warehouse Manager permission set:

1. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets and then New.

2. For Label, enter Warehouse Manager.

3. For User License, select Salesforce Platform and click Save.

Now modify the new permission set so that it provides access to create, update, and delete Merchandise object records, and view the
Merchandise tab.

1. From the Warehouse Manager permission set detail page, click Object Settings.

2. Click Merchandise.

3. Click Edit.

4. In Tab Settings, enable Available and Visible.

5. In Object Permissions, enable all permissions.

6. Click Save.

Step 4: Create the Salesperson Permission Set
Use these steps to create the Warehouse Salesperson permission set:

1. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets and then New.

2. For Label, enter Warehouse Salesperson.

3. For User License, select Salesforce Platform and click Save.

Now modify the new permission set so that it provides access to create, update, and delete Invoice and Line Item object records, and
view the Invoices tab.

101

Step 3: Create the Manager Permission SetSecure Your System

1. From the Warehouse Salesperson permission set detail page, click Object Settings.

2. Click Invoices and then Edit.

3. In Tab Settings, enable Available and Visible.

4. In Object Permissions, enable these permissions: Read, Create, Edit, and Delete.

5. Click Save.

6. In the breadcrumb menu, click Object Settings.

7. Click Line Items.

8. Click Edit.

9. In Object Permissions, enable the following permissions: Read, Create, Edit, and Delete.

10. Click Save.

The Warehouse Salesperson permission set doesn’t give access to Merchandise, only Invoices and Line Items. You can see this on the
Object Settings page for the permission set.

102

Step 4: Create the Salesperson Permission SetSecure Your System

Create New Users

Duration: 5–10 minutes

Once you have profiles and permission sets in place, you can turn your attention to users. Every new org starts with a super-user
administrator that can access and customize everything in the organization, including profiles, permission sets, and other users. You
happen to be logged in as that super-user right now. Because you don’t want everyone to have that kind of power and access, you’ll
want to restrict what people can do.

In this tutorial you create two new users that represent people that work in the warehouse: a manager and a salesperson. Yes, these are
the same names for the profiles and permission sets you created earlier, but now you’ll assign them to people.

Step 1: Create New Users
Use the following steps to create a new user that serves a "sales manager." In the following steps, make sure to use an email address
that you can access immediately:

1. In Setup, enter Users in the Quick Find box, then select Users.

2. Click New User.

3. Fill out the form as follows:

• First Name: Sales

• Last Name: Manager

• Email: enter your email address

• Username: your username.manager@your domain

• Nickname: your username.manager

• Role: Leave this field blank for now, you’ll assign roles later.

• User License: Salesforce Platform

• Profile: Warehouse App User

• At the very bottom, clear the checkboxes for the newsletters, but make sure Generate new password and notify
user immediately: is checked.

4. Click Save.

Repeat the process to create a new user that serves as a "salesperson," with the following exceptions:

• First Name: Sales

• Last Name: Person

• Email: enter your email address

• Username: your username.sales@your domain

• Nickname: your username.sales

• Role: Leave this field blank for now, you’ll assign roles later.

• User License: Salesforce Platform

• Profile: Warehouse App User

• At the very bottom, clear the checkboxes for the newsletters, but make sure Generate new password and notify
user immediately: is checked.

103

Create New UsersSecure Your System

You now have two users, both using the Warehouse App User profile. Also, you should have two emails in your email inbox: activation
emails for each new user.

Step 2: Test Record Access
The Warehouse App User profile is assigned to both of these new users, so while they can log into the DE org and start the Warehouse
app, they can’t do much more. First, you’ll log in as the Sales Manager.

1. You should have an email in your inbox, click the link to log in as the Sales Manager.

Note: This is a good time to switch between browsers, as noted in the Prerequisites.

2. Change your password and then you should see the Home tab.

3. Notice that the default app is Warehouse (if you don’t see Warehouse that’s OK, you just missed that setting in the profile, either
edit the profile or select the Warehouse app now), but that you can't see the Merchandise or Invoices tabs. Why not? Because the
user's profile doesn't provide the permissions necessary to access to the underlying objects that power the app.

Step 3: Assign Permission Sets to Users
To give the Sales Manager and Sales Person users access to the permissions they require, simply update each user with the appropriate
permission set.

1. Switch back to the browser with your administrator login.

2. In Setup, enter Users in the Quick Find box, then select Users.

3. Click Manager, Sales to go to this user's detail page.

4. In the Permission Set Assignments section, click Edit Assignments.

5. Add both the Warehouse Merchandise Manager and Warehouse Sales Person permission sets to the user's list of Enabled Permission
Sets and click Save.

6. Repeat the previous steps for the Person, Sales user, but this time, add only the Warehouse Sales Person permission set to the user's
list of permission sets.

104

Step 2: Test Record AccessSecure Your System

Step 4: Test Record Access
Now it's time to see the effects of adding the permission sets to the two users.

1. Switch back to your other browser that's already logged into the DE org as the Sales Manager, refresh the page, and notice that the
Merchandise and Invoices tabs are now available.

2. Click on the Merchandise tab.

3. Click Go! next to View: All to display all records.

4. Click on the Invoices tab and check those out, too.

5. Now log out and, using the activation link in your email, log in as the Salesperson (and change your password).

6. Confirm that the Salesperson can see the Invoices tab, but not the Merchandise tab, as governed by the user's permission sets.

Tell Me More
As you can see, it’s pretty easy to create profiles and permission sets and then assign them to different users.

Configure Org-Wide Defaults

Duration: 5–10 minutes

Inherent in the design of the platform’s security model is the notion of record ownership, which helps to simplify the implementation of
row-level least-privilege data security policies. The creator of a record owns the record after creation and has full access — the owner
can read, update, delete, and transfer ownership for the record.

Various data access controls determine whether org users can access records they don’t own. These controls include an object’s sharing
model, role hierarchies, groups, and sharing rules.

To begin, each object has a sharing model, also known as an organization-wide default (OWD), which governs the default org-wide
access levels users have to each other’s records in the object.

• With an object that uses a private sharing model, the record owner can read and manage a record, assuming that the user’s profile
provides object-level access. Other users can work with records they don’t own only by other record sharing means.

• With an object that uses a public read-only sharing model, any user can read all records in the object, assuming that the user’s profile
provides the Read permission and field-level access for the object.

• With an object that uses a public read/write sharing model, any user can read and write all records in the object, as permitted by
the object- and field-level permissions in each user’s profile.

105

Step 4: Test Record AccessSecure Your System

An object can have different sharing requirements based on the user context, so it’s very important to consider this fact when setting
its OWD. A good rule of thumb is to set each object’s OWD to be as strict as necessary for the most strict user requirement, and then use
sharing rules to open up access, as required.

So why can the Salesperson user see all Invoices and Line Items? To answer this, investigate the OWDs for these objects.

Step 1: Modify the OWD for Invoices
Complete the following steps to view the OWD for Invoices.

1. Switch back to the browser with your super-user admin login.

2. From Setup, enter Sharing Settings in the Quick Find box, then select Sharing Settings.

Before continuing, notice that the OWD for both Invoice and Merchandise is set to Public Read/Write. This setting allows every logged-in
user to read, create, update, and delete any record in these objects no matter who owns the record. Now change the OWD for both
objects:

1. In the Organization-Wide Defaults section, click Edit.

2. For Invoice, select Private, and select Grant Access Using Hierarchies.

3. For Merchandise, select Public Read Only, and select Grant Access Using Hierarchies.

4. Click Save.

106

Step 1: Modify the OWD for InvoicesSecure Your System

Tell Me More....
What about the Line Items object? Before you leave this page, notice that the Line Item object's OWD is "Controlled by Parent." This
setting means that it inherits the OWD of the parent Invoice object. This relationship was created automatically because of the master-detail
relationship between the two objects. Neat, huh?

Step 2: Test Record Access
To see the effects of changing the OWD for Invoice, complete the following steps as a Sales Person:

1. Switch back to the browser that's logged into the DE org as the Sales Person, then click the Invoices tab.

2. Click Go! next to View: All.

3. Notice that the list of available invoices is empty.

Why did this change? Although Sales Person has a permission set that lets the user CRUD Invoice and Line Item records, this permission
only provides the ability to CRUD records that the user owns. Considering that the OWD for these objects is set to Private, and the only
records created were by the admin super-user, Sales Person can’t see that owner’s records. To prove that Sales Person can access only
records that the user owns, complete the following steps to create a new Invoice that Sales Person owns:

1. On the Invoice detail page, click New , then click Save.

2. Click New Line Item and add choose some Merchandise. Click Save.

3. Click the Invoices tab and you’ll see there’s now an invoice there.

4. Now log out, and log back in as the Sales Manager user.

5. Repeat the steps above to prove that you cannot access Invoices and Line Items in the system that the Sales Manager user does not
own due to the Private setting for these objects.

Share Records Using a Role Hierarchy

Duration: 5–10 minutes

In the last tutorial you saw that private record access can get in the way of managers seeing what their employees are up to. You need
to open up that record access to managers, but not necessarily all managers. Ideally managers should be able to see all invoices owned
by salespeople that they manage. In this tutorial, you learn how to set up and use a role hierarchy to automatically open up private
records in an organization's org chart.

Step 1: Create a Role Hierarchy
To create a role hierarchy:

107

Step 2: Test Record AccessSecure Your System

1. Switch back to the browser with your administrator login.

2. From Setup, enter Roles in the Quick Find box, then select Roles.

Notice there’s a drop-down list of sample role hierarchies you can choose. Click through the options and notice the differences.

3. Chose Territory-based Sample and click Set Up Roles.

4. Under CEO, click Add Role.

5. For Label, enter Sales Manager and click Save & New.

6. For Label, enter Salesperson.

7. For This role reports to, use the lookup to select Sales Manager.

8. Click Save.

9. Now go back to the Creating the Role Hierarchy page. Expand the node for Sales Manager, and you can see the subordinate Salesperson
role.

Tell Me More....
There are a lot of extra roles defined based on the sample template you started with. You can delete them if you want, it won’t make
any difference for this set of tutorials. Note that DE orgs come only with two users, so unfortunately you can’t continue to add users.

Step 2: Assign Users to Roles
1. If you’re not on the Creating the Role Hierarchy page, from Setup, enter Roles in the Quick Find box, select Roles, and then

click Set Up Roles.

2. Next to Sales Manager role, click Assign.

3. Add Sales Manager to the Selected list, then click Save.

4. Repeat the process to assign the Sales Person user to the Salesperson role.

108

Step 2: Assign Users to RolesSecure Your System

Step 3: Test Record Access
Again, it's time to test the effects of your most recent security configuration changes.

1. Switch back to the browser that's logged in as the Sales Manager, then click the Invoices tab.

2. Click Go! next to View: All.

3. Notice that the Sales Manager user can now work with the invoice owned by the Sales Person user. That's because the role hierarchy
shares private records up the role hierarchy.

Tell Me More....
A role hierarchy is just one option for sharing access to private records. For example, organizations often need to share sets of private
records that are related by ownership or other criteria with particular users. For such requirements, you can use groups. All that you need
to do is create a group and your sharing rules using a few more clicks.

109

Step 3: Test Record AccessSecure Your System

CODE CUSTOM APP LOGIC

To quickly build apps that are easy to maintain, use the platform’s built-in, point-and-click options for business logic whenever possible.
Sometimes though, features such as workflow rules, formula fields, rollup summary fields, and approvals can't meet all of your needs
— that's when you should consider coding app logic.

In this series of tutorials, you learn how to use Apex and code custom app logic that meets unique requirements for app logic. Apex is
the platform’s programming language that you can use to build things like stored procedures and database triggers that are common
in traditional database-driven application development platforms. Along the way, you’ll learn how to use several tools to develop Apex
classes, methods, database triggers, and unit tests.

Explore the Developer Console and Apex

In this tutorial, you get a first look at Apex using the Developer Console.

Step 1: Start the Developer Console
There are several tools that you can use for code. This tutorial gets you started with Apex language fundamentals using one such tool,
the Developer Console, which is part of the browser-based development environment.

Log into your DE org open the Developer Console under Your Name or the quick access menu ().

110

Tell Me More....
Notice the Help link click at the top of the of the console? If you click the link you'll find a bunch of really great resources. If you don’t
have time now, check it out later.

Step 2: Execute Basic Apex Code
Now it's time for you to dive into Apex. Use the console to execute a few lines of Apex code.

1. Click Debug > Open Execute Anonymous Window.

2. In the Enter Apex Code window, enter the following code.

for (Integer i=1; i<=10; i++) {
System.debug('Hi ' + i); // output "Hi" to the debug log

}

3. Select the checkbox for Open Log and then click Execute.

Tell Me More....
Apex is a programming language that you can learn quickly, especially if you already know similar languages, such as Java, C++, or C#.
Although the example above is extremely simple, you can learn a lot about Apex by studying it closely.

• Notice that it is a strongly typed language that supports common language fundamentals, such as variable declarations, assignments,
flow control structures such as loops, string concatenation, and comments. It's also an object-oriented language, as the call to the
debug method of the standard System class illustrates.

• If you're wondering why it is called anonymous code, that's because you are not naming and saving the code for later reuse — you
simply execute it, and once you leave the console and clear your work, it's gone. So where's your output? Continue to the next step.

Step 3: Review the Execution Log
Each time you execute some code in the console, you produce a log that contains a series of records that detail what happened during
the code execution.

1. Click the Logs tab in the lower portion of the console. A sortable list of the most recent execution logs displays.

2. To look at the records in a specific log, double-click the log of interest. This action creates a new Log tab below with corresponding
Stack, Execution Log, and Source and Variables section.

111

Step 2: Execute Basic Apex CodeCode Custom App Logic

3. In the Execution Log section, enter DEBUG (all caps) next to the Filter checkbox. Notice that the log only shows records
corresponding to System.debug calls, which verifies the output of "Hi" plus the value of the loop counter variable as it iterates.

Tell Me More....
There's a lot of information in a log. For example, in the Stack section, the Execution Tree tab shows a hierarchical tree of execution
operations, while the Performance Tree tab shows aggregated operation performance data that you can use to diagnose performance
issues. The Execution Log section shows individual durations and log records for the log that you select above in the Logs tab. Execution
logs can have many records, so it's useful to filter noise out and focus on just what interests you.

Feel free to explore the Developer Console and experiment. Remember that it's always there when you need to quickly test, tune, or
debug some Apex code. For more information about the Developer Console, click Help to open Help and Training.

Create an Apex Class and Method

Level: Intermediate; Duration: 20-30 minutes

In this tutorial, you learn how to create persistent Apex classes with named methods, what some app developers might think of as
database-stored procedures.

The Warehouse app currently requires that the user manually enter a line item number for each line item in an invoice. This is not optimal
as it can lead to strange sequences of numbers when people are not careful and when records get deleted.

112

Create an Apex Class and MethodCode Custom App Logic

Sometimes you run into situations where you can’t solve the problem using declarative tools such as workflow rules, so this tutorial
shows you how to build an Apex class method that automatically renumbers all line items for a given invoice. The goal is to make sure
that every invoice has a collection of line items that starts with the number 1 and increments by 1 with no gaps (1, 2, 3, ...).

Step 1: Create an Apex Class
An Apex class is an encapsulation of related variables, constants, and methods, stored centrally on the platform that your app can use
to process work.

To create an Apex class using the Developer Console:

1.
In your DE org, open the Developer Console under Your Name or the quick access menu ().

2. Click File > New > Apex Class.

3. Name the new class InvoiceUtilities, then click OK.

4. The default Apex class template creates the new class with the following template code.

public class InvoiceUtilities {
}

5. Comment the code as follows, and then click File > Save.

public class InvoiceUtilities {
// Class method to renumber Line Items for a given Invoice number.
// Returns a string that indicates success or failure.

}

Step 2: Create a Blueprint Class Method
The Warehouse app currently requires that the user manually enter a line item number for each line item in an invoice. This is not optimal
as it can lead to strange sequences of numbers when people are not careful and when records get deleted.

Unfortunately, there's no way to solve this problem using declarative tools such as workflow rules, so this tutorial shows you how to
build an Apex class method that automatically renumbers all line items for a given invoice. The goal is to make sure that every invoice
has a collection of line items that start with the number 1 and increment by 1 with no gaps (1, 2, 3, ...).

The first thing you might do is determine the basics for the class method you want to build: its name, the parameters it accepts, what
values it returns to the calling environment, and perhaps some pseudo code to outline your plan of attack.

• In the console, modify your Apex class to match the following code.

• Don't save or you'll get a compilation error because we haven't added a return statement yet.

For source code, see https://gist.github.com/3605633.

public class InvoiceUtilities {
// Class method to renumber Line Items for a given Invoice number.
// Returns a string that indicates success or failure.
public static String renumberLineItems(String invoiceName) {

// Create a copy of the target Invoice object and its Line Items.

// Loop through each Line Item, re-numbering as you go

// Update the Line Items in one transaction, rollback if any problems

113

Step 1: Create an Apex ClassCode Custom App Logic

https://gist.github.com/3605633

// and return error messages to the calling environment.

// On success, return a message to the calling program.
}

}

Step 3: Get an Invoice and its Line Items
Now that you have a plan, start filling out the code beneath your comments. Start by creating a local copy of the target invoice and its
line items.

1. Beneath the method declaration and first comment, enter the following in the method.

Invoice__c invoice =

2. Now use a SOQL query that orders existing line items and uses a filter to retrieve the target invoice, as given by the method's input
parameter. Notice that the object notation in SOQL is somewhat unique.

Invoice__c invoice = [Select i.Name, (Select Name From Line_Items__r ORDER BY Name)
From Invoice__c i
Where i.Name = :invoiceName LIMIT 1];

3. Don't save yet or you'll get a compilation error because we haven't added a return statement yet.

Step 4: Create the Final Version of the Class Method
Now that you have a plan, start filling out the pseudo code to build the final class method logic. Start by creating a local sObject copy
of the target invoice and its line items (see lines 8-10 below). The method code includes a SOQL query that orders existing line items
(see line 8) and uses a filter to retrieve the target invoice, as given by the method's input parameter (see line 10). Notice that the object
notation in SOQL is somewhat unique.

Note: Remember to Save your class as you go along in this step. On each save operation, make sure to check the Problems pane
and confirm that you don't have any compilation errors.

For source code, see https://gist.github.com/3605645.

public class InvoiceUtilities {
// Class method to renumber Line Items for a given Invoice number.
// Returns a string that indicates success or failure.
public static String renumberLineItems(String invoiceName) {

// Create a copy of the target Invoice object and its Line Items.
Invoice__c invoice =

[SELECT i.Name, (Select Name FROM Line_Items__r ORDER BY Name)
FROM Invoice__c i
WHERE i.Name = :invoiceName LIMIT 1];

// Loop through each Line Item, renumbering as you go.

// Update the Line Items in one transaction, rollback if any problems
// and return error messages to the calling environment.

// On success, return a message to the calling program.
return 'Line items renumbered successfully.';

114

Step 3: Get an Invoice and its Line ItemsCode Custom App Logic

https://gist.github.com/3605645

}
}

Save the updated Apex class. On each save operation, check the Problems pane and confirm that you don't have any compilation errors.
If you do, fix them appropriately and save the corrected code.

Next, update the class with a loop to process and renumber each line item (see lines 13-18).

For source code, https://gist.github.com/3605650.

public class InvoiceUtilities {

// Class method to renumber Line Items for a given Invoice number.
// Returns a string that indicates success or failure.
public static String renumberLineItems(String invoiceName) {

// Create a copy of the target Invoice object and its Line Items.
Invoice__c invoice =

[SELECT i.Name, (SELECT Name FROM Line_Items__r ORDER BY Name)
FROM Invoice__c i
WHERE i.Name = :invoiceName LIMIT 1];

// Loop through each Line Item, renumbering as you go.
Integer i = 1;
for (Line_Item__c item : invoice.Line_Items__r) {

item.Name = String.valueOf(i);
System.debug(item.Name);
i++;

}

// Update the Line Items in one transaction, rollback if any problems,
// and return error messages to the calling environment.

// On success, return a message to the calling program.
return 'Line items renumbered successfully.';

}
}

Notice in line 14, the FOR loop uses Apex-specific object notation to reference the line items of the invoice. Line 18 includes a
System.debug statement to output some handy information to the debug log.

Now create the final version of the class method so that it updates the database with the new version of the invoice's line items (see
lines 22-30).

For source code, see https://gist.github.com/3605654.

public class InvoiceUtilities {

// Class method to renumber Line Items for a given Invoice number.
// Returns a string that indicates success or failure.
public static String renumberLineItems(String invoiceName) {

// Create a copy of the target Invoice object and its Line Items.
Invoice__c invoice =

[SELECT i.Name, (SELECT Name FROM Line_Items__r ORDER BY Name)
FROM Invoice__c i
WHERE i.Name = :invoiceName LIMIT 1];

115

Step 4: Create the Final Version of the Class MethodCode Custom App Logic

https://gist.github.com/3605650
https://gist.github.com/3605654

// Loop through each Line Item, renumbering as you go.
Integer i = 1;
for (Line_Item__c item : invoice.Line_Items__r) {

item.Name = String.valueOf(i);
System.debug(item.Name);
i++;

}

// Update the Line Items in one transaction, rollback if any problems
// and return error messages to the calling environment.
try {

Database.update(invoice.Line_Items__r);
}
catch (DmlException e) {

return e.getMessage();
}

// On success, return a message to the calling program.
return 'Line items re-numbered successfully.';

}
}

This method uses try/catch block to update the database and handle any unforeseen runtime exceptions that might occur.

• In the try block (see lines 22-24), the Database.update method is a standard Apex method that you can use to update one
or more sObjects. Again, notice the object notation to reference the target invoice's related line items
(invoice.Line_Items__r).

• The catch block (see lines 25-27) catches any DmlException. It contains a return statement that returns the exception error
message to the caller.

• If the method continues past the try/catch block, which means that no exception was thrown and the method didn't return the
exception error message, it simply returns a standard message to indicate success (see line 30).

Step 5: Manually Test the Apex Class Method
Once you confirm that you can save the Apex class without any errors, it's time to test your new class method.

First, create some test data.

1. In a new browser tab, open up an existing invoice that has some line items. If you don’t have any existing invoices, create one. Note
the Invoice Number.

2. Update or insert one or more line items so that there is an unwanted sequence of line item numbers (e.g., 1, 3, 6). If you didn’t have
any test data at the beginning of this step, you may need to create a couple of merchandise records before you can add any line
items.

3. Now you can call the method and target the invoice above to renumber its line items.

4. Switch back to the Developer Console. Choose Debug > Open Execute Anonymous Window.

5. Execute the following anonymous Apex. For the method input parameter, substitute the invoice number that you noted above. For
example, if your invoice number is INV-0000, substitute that for INV-0004 in the following code:

String s = InvoiceUtilities.renumberLineItems('INV-0004');

116

Step 5: Manually Test the Apex Class MethodCode Custom App Logic

6. If you switch back to your browser and refresh the Invoice detail page, you should notice that its line items are now in sequence
without any gaps.

Congratulations! With less than 20 lines of Apex code, you've built an Apex class method to solve a real-world business requirement.

Tell Me More....
The execution output is interesting to inspect if you want to learn more about Apex code execution. Remember from an earlier tutorial,
in the console, you can view logs for code executions. Although a full discussion of the log output for the above class method execution
is outside the scope of this tutorial, here are a few highlights.

• Filter for SOQL_EXECUTE and you see that the embedded SOQL query retrieved one row from the database.

• Filter for DEBUG and you see the output from the System.debug calls in the method.

Call an Apex Class Method Using a Button

Level: Advanced; Duration: 20-30 minutes

In the previous tutorial, you created an Apex class method that your app can use to renumber an invoice's line items that are out of
sequence. But you certainly can't expect users to execute anonymous Apex code to call the method. This tutorial shows you how to
create a custom button on the Invoice detail page that calls the method for the current invoice.

Step 1: Create a Custom Button
By default, every detail page includes several standard buttons, including Edit, Delete, and Clone. You can also create custom buttons
and add them to page layouts as needed. Use the following steps to create a custom button for the Invoice detail page.

1. From Setup in your Developer Edition organization, enter Objects in the Quick Find box, select Objects, and then click
Invoice.

2. Scroll down to the Buttons, Links, and Actions section and click New Button or Link.

3. In the Label field, enter Renumber Line Items.

4. For Display Type choose Detail Page Button.

117

Call an Apex Class Method Using a ButtonCode Custom App Logic

5. For Behavior choose Execute JavaScript.

6. For Content Source choose OnClick JavaScript.

7. Notice that you are creating a Detail Page button that executes some JavaScript. For your convenience, here is the JavaScript code
that you can copy and paste into the form. For source code, see https://gist.github.com/3605659.

{!REQUIRESCRIPT("/soap/ajax/29.0/connection.js")}
{!REQUIRESCRIPT("/soap/ajax/29.0/apex.js")}
var result = sforce.apex.execute("InvoiceUtilities","renumberLineItems",{invoiceName:"{!
Invoice__c.Name}"});
alert(result);
window.location.reload();

8. Make sure your form matches the following screen, and then click Save.

9. When prompted, click OK. We’ll add this button to a page layout in the next step.

Tell Me More....
Examine the code you pasted.

• Lines 1 and 2 load two libraries from the Salesforce AJAX Toolkit, a JavaScript wrapper around the Force.com SOAP API.

• Line 3 leverages the AJAX Toolkit to call the method, passing in the Name of the current invoice.

• Lines 4 and 5 are standard JavaScript calls that display an alert message and refresh the current page.

Step 2: Add the Button to the Page Layout
Next up is to add the new button to the Invoice detail page layout. (Page layout modification is something that this tutorial assumes
you already understand, so this step is brief.) To add the custom button to the Invoice page layout:

1. From the Invoice custom object detail page, scroll down to the Page Layouts.

2. Click Edit next to the Invoice Layout.

118

Step 2: Add the Button to the Page LayoutCode Custom App Logic

https://gist.github.com/3605659

3. In the palette at the top, click Buttons.

4. Drag the Renumber Line Items button to the Custom Buttons section of the page layout, then click Save.

Step 3: Modify the Apex Class
The JavaScript in the custom button leverages the AJAX Toolkit to make SOAP calls from JavaScript. Considering this, there are two minor
changes that you need to make to the Apex class and method so that it supports SOAP API calls.

To modify the Apex class without leaving the browser:

1. From Setup, enter “Apex Classes” in the Quick Find box, then select Apex Classes.

2. Notice next to the InvoiceUtilities class there are three links: Edit, Del, and Security. Click Edit.

3. Modify the scope for both the class and the method from public to global (line 1) and webservice (line 4), then click Save.

For source code, see https://gist.github.com/3605663.

Your final code should be as follows:

global with sharing class InvoiceUtilities {
// Class method to renumber Line Items for a given Invoice number.
// Returns a string that indicates success or failure.
webservice static String renumberLineItems(String invoiceName) {

// Create a copy of the target Invoice object and its Line Items.
Invoice__c invoice =

[SELECT i.Name, (SELECT Name FROM Line_Items__r ORDER BY Name)
FROM Invoice__c i
WHERE i.Name = :invoiceName LIMIT 1];

// Loop through each Line Item, renumbering as you go.
Integer i = 1;
for (Line_Item__c item : invoice.Line_Items__r) {

item.Name = String.valueOf(i);
System.debug(item.Name);
i++;

}

119

Step 3: Modify the Apex ClassCode Custom App Logic

https://gist.github.com/3605663

// Update the Line Items in one transaction, rollback if any problems
// and return error messages to the calling environment.
try {

Database.update(invoice.Line_Items__r);
}
catch (DmlException e) {

return e.getMessage();
}

// On success, return a message to the calling program.
return 'Line items renumbered successfully.';

}
}

When you return to the list of Apex classes, notice that there's a new link for the InvoiceUtilities class: WSDL. If you click it,
you see a WSDL file that apps can use to interface with the class.

Step 4: Test the New Button
Now it's time to test the new button and modified Apex class method.

1. Click the Invoices tab of the Warehouse app.

2. Open any invoice that has line items.

3. Update or insert one or more line items so that there is an unwanted sequence of line item numbers (for example, 1, 3, 6).

4. Click Renumber Line Items. An alert should pop up to indicate success. After you acknowledge the alert, the page refreshes with
the updated line items.

Tell Me More....
Another way to call Apex class methods from JavaScript is to use the platform’s JavaScript remoting feature. For more information, see
the Apex Developer Guide.

Create a Database Trigger

Level: Intermediate; Duration: 20-30 minutes

120

Step 4: Test the New ButtonCode Custom App Logic

Apex triggers are useful for implementing business logic that you can’t implement with clicks (such as workflow rules). In this tutorial,
the business scenario is this: by default, master-detail relationships automatically cascade the deletion of a master record to all related
detail records. Our Warehouse app needs to deviate from this default behavior and employ a trigger that prevents the deletion of Invoices
that have Line Items.

Step 1: Create a Database Trigger
To create a trigger on the Invoice object.

1. From Setup, enter Objects in the Quick Find box, then select Objects and click Invoice.

2. Scroll down to Triggers and click New.

3. In the editor, replace <name> with DeleteRestrictInvoice.

4. Similarly, replace <events> with before delete.

5. Replace the template code with the following.

For source code, see https://gist.github.com/3605667.

trigger DeleteRestrictInvoice on Invoice__c (before delete) {

// create a list of Invoices in Trigger.oldMap along with their Line Items
List<Invoice__c> invoices = [Select i.Name, (Select Name From Line_Items__r)

From Invoice__c i
Where i.Id IN :Trigger.oldMap.keySet()];

// loop through the Invoices, attaching errors to those that have Line Items
for (Invoice__c invoice : invoices) {

if (!invoice.Line_Items__r.isEmpty()) {
Trigger.oldMap.get(invoice.id).addError('Cannot delete Invoice with Line Items');

}
}

}

6. Click Save.

Tell Me More....
• A trigger can fire before or after DML operations. The trigger in this tutorial fires before the execution of a delete operation that

targets one or more records in the Invoice object.

• Triggers have special variables accessible to them called context variables. In a nutshell, old and new context variables provide copies
of old and new sObjects being updated by the call that fires the trigger. As you can see in the code, context variables are handy to
scope processing in a trigger body.

• In the FOR loop, the trigger simply adds a validation error to any Invoice that has Line Items, which in turn causes the Force.com
platform to roll back the transaction that fires the trigger (in this case, delete).

Step 2: Manually Test the Trigger
To test that the trigger does what you want it to, open an invoice that has line items, and click Delete. When you do, you should see an
error.

121

Step 1: Create a Database TriggerCode Custom App Logic

https://gist.github.com/3605667

Next, try to delete an invoice that does not have any line items to make sure that the trigger does not prevent the deletion of such
invoices.

Create Unit Tests

Level: Advanced; Duration: 20-30 minutes

Apex provides built-in support for unit test creation and execution, including test results that indicate how much code is covered. Before
you can add Apex classes and database triggers in your production org, you must create unit tests that programmatically validate at
least 75% of the code in your organization. This tutorial gets you started with unit testing.

Why test your code with unit tests? Testing helps verify that your code executes as you expect it to, and that it doesn’t consume
unnecessary or extraordinary amounts of system resource. As a side-effect, it also helps ensure the integrity of Force.com releases.

Step 1: Create a Unit Test
Unit test methods take no arguments and commit no data to the database. To create unit tests for the DeleteRestrictInvoice
trigger, complete the following steps:

1.
Open the Developer Console under Your Name or the quick access menu ().

2. Click File > New > Apex Class.

3. In the popup, enter TestDeleteRestrictInvoice for the class name and click OK.

4. Replace the auto-generated code with the following code into the new Apex class editor, and then press CTRL+S to save the class.

For source code, see https://gist.github.com/3605669.

@isTest
private class TestDeleteRestrictInvoice {

// Invoice generator, with or without a Line Item
static Invoice__c createNewInvoice(Boolean withLineItem) {

// Create test Merchandise
Merchandise__c merchandise = new Merchandise__c(

Name = 'Test Laptop',
Quantity__c = 1000,
Price__c = 500

);
insert merchandise;

// Create test Invoice
Invoice__c invoice = new Invoice__c();
insert invoice;

// Create test Line Item and insert it into the database, if withLineItem == true
if (withLineItem) {

Line_Item__c item = new Line_Item__c(

122

Create Unit TestsCode Custom App Logic

https://gist.github.com/3605669

name = '1',
Quantity__c = 1,
Merchandise__c = merchandise.Id,
Invoice__c = invoice.Id

);
insert item;

}
return invoice;

}

// Single row Invoice with no Line Items => delete
static testMethod void verifyInvoiceNoLineItemsDelete(){

// Create test Invoice and insert it
Invoice__c invoice = createNewInvoice(false);

// Delete the Invoice, capture the result
Database.DeleteResult result = Database.delete(invoice, false);

// Assert success, because target Invoice doesn't have Line Items
System.assert(result.isSuccess());
}

// Single row Invoice with Line Items => delete restrict
static testMethod void verifyInvoiceLineItemsRestrict(){

// Create test Invoice and Line Item and insert them
Invoice__c invoice = createNewInvoice(true);

// Delete the Invoice, capture the result
Database.DeleteResult result = Database.delete(invoice, false);

// Assert failure-not success, because target Invoice has tracks
System.assert(!result.isSuccess());

}

// Bulk delete of Invoice, one without Line Items, another with
static testMethod void verifyBulkInvoiceDeleteRestrict(){

// Create two test Invoices, one with and without a Line Item
Invoice__c[] invoices = new List<Invoice__c>();
invoices.add(createNewInvoice(false));
invoices.add(createNewInvoice(true));

// Delete the Invoices, opt_allOrNone = false, capture the results.
Database.DeleteResult[] results = Database.delete(invoices, false);

// Assert success for first Invoice
System.assert(results[0].isSuccess());
// Assert not success for second Invoice
System.assert(!results[1].isSuccess());

}
}

123

Step 1: Create a Unit TestCode Custom App Logic

Tell Me More....
The comments in the code explain the gist of the test methods. Notice that it’s important, when building and testing triggers, to keep
in mind that triggers can fire as the result of both single-row and bulk triggering statements. Here are a few important points to understand
about building unit tests.

• Use the @isTest annotation to define classes or individual methods that only contain code used for testing.

• Test classes must be top-level classes.

• Unit test methods are static methods that are defined with the @isTest annotation or the testMethod keyword.

Step 2: Run Unit Tests
When you run a test class, the platform executes all of the unit test methods in the class and returns a report for the test run.

1. In the Developer Console, click Test > New Run.

2. To add your test class, click TestDeleteRestrictInvoice, and then click >.

3. Click Run.

The test result displays in the Tests tab. You can expand the test run to view which methods were run. You’ll see an output similar
to this.

Any time you modify the trigger, make sure to run the corresponding unit tests so that you have confidence that the trigger still works
properly.

124

Step 2: Run Unit TestsCode Custom App Logic

BUILD A CUSTOM USER INTERFACE WITH VISUALFORCE

Duration: 30–45 minutes

Visualforce is a component-based user interface framework for the Salesforce platform. In previous tutorials you built and extended your
app by using a user interface that is automatically generated. Visualforce gives you a lot more control over the user interface by providing
a view framework that includes a tag-based markup language similar to HTML, a library of reusable components that can be extended,
and an Apex-based controller model. Visualforce supports the Model-View-Controller (MVC) style of user interface design, and is highly
flexible.

Code a Custom User Interface

Duration: 30–45 minutes

In this tutorial, you use Visualforce to create a new interface for the Warehouse app that displays an inventory count sheet that lets you
list your inventory of merchandise, as well as update the counts on each. The purpose of the count sheet is to update the computer
system with a physical count of the merchandise, in case they are different.

Step 1: Enable Visualforce Development Mode
Development Mode embeds a Visualforce page editor in your browser. It allows you to see code and preview the page at the same time.
Development Mode also adds an Apex editor for editing controllers and extensions.

1. From your personal settings, enter Advanced User Details in the Quick Find box, then select Advanced User Details.
No results? Enter Personal Information in the Quick Find box, then select Personal Information.

2. Click Edit.

3. Select the Development Mode checkbox, and click Save.

125

Step 2: Create a Visualforce Page
In this step you create a Visualforce page that will serve as an inventory count sheet.

1. In your browser, add the text /apex/CountSheet to the URL for your Salesforce instance. For example, if your Salesforce
instance is https://na1.salesforce.com, the new URL would be
https://na1.salesforce.com/apex/CountSheet. You will get an error message: Page CountSheet does not exist.

2. Click the Create Page CountSheet link to create the new page.

3. Click the Page Editor link (CountSheet) in the bottom left corner of the page. The Page Editor tab displays the code and a preview
of the new page (which has some default text). It should look like this.

126

Step 2: Create a Visualforce PageBuild a Custom User Interface with Visualforce

4. You don't really want the heading of the page to say “Congratulations”, so change the contents of the <h1> tag to Inventory
Count Sheet, and go ahead and remove the comments. The code for the page should now look like this.

<apex:page>

<h1>Inventory Count Sheet</h1>

</apex:page>

5. Click the Save icon at the top of the Page Editor. The page reloads to reflect your changes.

Tell Me More....
• Notice that the code for the page looks a lot like standard HTML. That's because a Visualforce page combines HTML tags, such as

<h1>, with Visualforce-specific tags, which usually start with <apex:>

• If your browser has trouble displaying Developer Mode, you can turn it off in the same way you turned it on. To create a new
Visualforce page, from Setup, enter Visualforce Pages in the Quick Find box, then select Visualforce Pages.

Step 3: Add a Stylesheet Static Resource
You want your Warehouse app to look slick, so you're going to use a custom stylesheet (CSS file) to specify the color, font, and arrangement
of text on your page. Most Web pages and Web designers use CSS, a standard Web technology, for this purpose, so we've created one
for you. In order for your pages to reference a stylesheet, you have to upload it as a static resource. A static resource is a file or collection
of files that is stored on Salesforce. Once your stylesheet is added as a static resource, it can be referenced by any of your Visualforce
pages.

To add a style sheet as a static resource:

1. In your browser, go to developer.force.com/workbook/styles. Download the file to your desktop. If the file automatically downloads,
make sure to save it as a .zip file.

2. Back in the app, from Setup, enter Static Resources in the Quick Find box, then select Static Resources, and click
New.

3. In the Name field, enter styles.

4. Click Choose File or Browse..., and find the styles.zip file you downloaded.

5. In the Cache Control drop-down list, select Public.

127

Step 3: Add a Stylesheet Static ResourceBuild a Custom User Interface with Visualforce

http://developer.force.com/workbook/styles

6. Click Save.

Now you need to modify your Visualforce page to reference the stylesheet.

1. Just as you did when you created the page, add the text /apex/CountSheet to the URL for your Salesforce instance.

2. Modify the attributes of the <apex:page> tag and enter the following code to remove the standard stylesheet, the header, and
the sidebar.

<apex:page standardStylesheets="false" showHeader="false" sidebar="false">

3. Now you need to tell the page where to find the stylesheet, so add a new line below the first <apex:page> tag and type <apex:

4. The editor has code insight, which gives you a drop-down list of the elements that are available in this context. Start typing
stylesheet and when you see apex:stylesheet, select it.

5. Now specify the location of the stylesheet as shown.

<apex:stylesheet value="{!URLFOR($Resource.styles, 'styles.css')}" />

6. Verify that your code looks like the following:

<apex:page standardStylesheets="false" showHeader="false" sidebar="false">

<apex:stylesheet value="{!URLFOR($Resource.styles, 'styles.css')}" />

<h1>Inventory Count Sheet</h1>

</apex:page>

7. Click the Save icon at the top of the Page Editor.

Note how the page now looks very different, the title is in a different font and location, and the standard header and sidebar are no
longer present.

128

Step 3: Add a Stylesheet Static ResourceBuild a Custom User Interface with Visualforce

Tell Me More....
Let's take a look at that stylesheet code in a little more detail.

• $Resource is a global variable accessible in Visualforce pages. With $Resource.styles, you refer to the resource called
"styles" that you created earlier.

• The URLFOR() function locates the static resource, and a file within that resource, and calculates the URL that should be generated
in your final page. If the syntax looks familiar, it's because you've already encountered it to dynamically evaluate values when the
Visualforce page is rendered.

• Why did you download a .zip file for only one small stylesheet? Usually stylesheets (and other static references) come in bundles of
more than one, and so it's useful to see the code that accesses a .zip file. If you had simply uploaded styles.css you could refer
to it using <apex:stylesheet value="{$Resource.styles}" />. While that code is simpler, you wouldn't know
how to refer to files in an archive. After the stylesheet is uploaded as a .zip file in a static resource, all you need to do is enter the
name of the stylesheet between single quotes: <apex:stylesheet value="{!URLFOR($Resource.styles,
'enter_stylesheet_name.css')}" />.

Step 4: Add a Controller to the Page
Visualforce's Model-View-Controller design pattern makes it easy to separate the view and its styling from the underlying database and
logic. In MVC, the view (the Visualforce page) interacts with a controller. In our case, the controller is usually an Apex class, which exposes
some functionality to the page. For example, the controller may contain the logic that should be executed when a button is clicked. A
controller also typically interacts with the model (the database)—exposing data that the view might want to display.

All Salesforce objects have default standard controllers that can be used to interact with the data associated with the object, so in many
cases you don't need to write the code for the controller yourself. You can extend the standard controllers to add new functionality or
create custom controllers from scratch. In this tutorial you'll use the default controller.

1. If the Page Editor isn't open on your Visualforce page, click Page Editor to edit the page.

2. Enable the Merchandise__c standard controller and add the standard list controller definition by editing the first
<apex:page> tag. The editor ignores whitespace, so you can enter the text on a new line.

<apex:page standardStylesheets="false" showHeader="false" sidebar="false"
standardController="Merchandise__c" recordSetVar="products">

3. Click the Save icon at the top of the Page Editor. You won't notice any change on the page. However, because you've indicated that
the page should use a controller, and defined the variable products, the variable will be available to you in the body of the page
and it will represent a list of merchandise records.

Tell Me More....
Take a look at what you added to the <apex:page> tag.

• Setting the standardController attribute connects your page to the standard controller for a specific object, in this case,
the Merchandise__c object.

• Setting the recordSetVar attribute puts a standard controller into "list" mode and sets a products variable, which will
contain the list of merchandise records.

Step 5: Display the Inventory Count Sheet as a Visualforce Page
You now have all the functionality in place to flesh out the Visualforce page. It will display a table of all the merchandise records, together
with an input field on each so that you can update the inventory count.

129

Step 4: Add a Controller to the PageBuild a Custom User Interface with Visualforce

1. In the line below the </h1> tag, start typing <apex:f on a new line, and highlight <apex:form> when it appears in the
drop-down list. The form will allow you to make updates to the page.

2. Press ENTER, and notice that the system generates the opening and closing tags for you.

3. Place your cursor between the tags and create a data table. Start by typing <apex:d and press ENTER to select dataTable
from the drop-down list.

4. Now you need to add some attributes to the dataTable tag. On one or more lines within the tag, enter the following.

<apex:dataTable value="{!products}" var="pitem" rowClasses="odd,even">

The value attribute indicates which list of items the dataTable component should iterate over. The var attribute assigns
each item of that list, for one single iteration, to the pvitem variable. The rowClasses attribute assigns CSS styling names to
alternate rows.

5. Now you are going to define each column, and determine where it gets its data by looking up the appropriate field in the pitem
variable. Add the following code between the opening and closing dataTable tags.

<apex:dataTable value="{!products}" var="pitem" rowClasses="odd,even">
<apex:column headerValue="Product">

<apex:outputText value="{!pitem.name}"/>
</apex:column>

</apex:dataTable>

6. Click Save, and you will see your table appear.

The headerValue attribute has simply provided a header title for the column, and below it you'll see a list of rows: one for each
merchandise record. The expression {!pitem.name} indicates that we want to display the name field of the current row.

7. Now, after the closing tag for the first column, add two more columns.

<apex:column headerValue="Inventory">
<apex:outputField value="{!pitem.Quantity__c}"/>

</apex:column>
<apex:column headerValue="Physical Count">

<apex:inputField value="{!pitem.Quantity__c}"/>
</apex:column>

Note: The second column is an inputField, not an outputField. The inputField will display a value, but it will
also allow you to change it.

8. Click Save and you have an inventory count sheet! It lists all the merchandise records, displays the current inventory, and provides
an input field for the physical count.

9. As a final embellishment, add a button that will modify the physical count on any row and refresh the values on the page. To do
this, enter the following code directly above the </apex:form> line.

<apex:commandButton action="{!quicksave}" value="Update Counts" />

130

Step 5: Display the Inventory Count Sheet as a Visualforce
Page

Build a Custom User Interface with Visualforce

Tell Me More....
• The dataTable component produces a table with rows, and each row is found by iterating over a list. The standard controller

you used for this page was set to Merchandise__c, and the recordSetVar to products. As a result, the controller
automatically populated the products list variable with merchandise records retrieved from the database. It's this list that the
dataTable component uses.

• You need a way to reference the current row as you iterate over the list. That statement var="pitem" assigns a variable called
pitem that holds the current row.

• Every standard controller has various methods that exist for all Salesforce objects. The commandButton component displays the
button, and invokes a method called quicksave on the standard controller, which updates the values on the records. Here,
you're updating the physical count of the product and performing a quick save, which updates the product with the new count.

• Although pagination isn't shown in this example, the functionality is there. If you have enough records to page through them, add
the following code below the commandButton for page-flipping action.

<apex:commandLink action="{!next}" value="Next" rendered="{!hasNext}" />

Step 6: Add Inline Editing Support
You now have a Visualforce page that contains a table that displays all the merchandise records and allows you to edit the inventory
count through the physical count input field. In this step, you modify this table to add inline editing support for the inventory output
field. Also, since inline editing makes the physical count input field unnecessary, you remove the last column, which contains this field.
After carrying out this step, you will be able to edit the inventory count by double-clicking a field in the Inventory column.

Instead of using an inputField to edit the physical count in the last column in the previous step, you can make the inventory
column editable by adding an inlineEditSupport component as a child component of the outputField component. The
following procedure shows how to do this.

1. Delete the following markup for the physical count column.

<apex:column headerValue="Physical Count">
<apex:inputField value="{!pitem.Quantity__c}"/>

</apex:column>

2. Within the inventory column, break up the outputField component so that it has an end tag, as follows.

<apex:outputField value="{!pitem.Quantity__c}">

</apex:outputField>

3. Between the outputField's start and end tag, insert the inlineEditSupport component.

<apex:inlineEditSupport event="ondblclick" showOnEdit="update"/>

131

Step 6: Add Inline Editing SupportBuild a Custom User Interface with Visualforce

4. Now that you've added the inlineEditSupport component, modify the update button to give it an ID and a style class name.
The ID is referenced by the inlineEditSupport component to show the button during editing. The style class name is used
in styles.css to hide the update button the first time the page renders. Replace the commandButton with the following.

<apex:commandButton id="update" action="{!quicksave}" value="Update Counts"
styleclass="updateButton"/>

5. Your Visualforce markup should look like the following.

<apex:page standardStylesheets="false" showHeader="false" sidebar="false"
standardController="Merchandise__c" recordsetVar="products">
<apex:stylesheet value="{!URLFOR($Resource.styles, 'styles.css')}"/>
<h1>Inventory Count Sheet</h1>
<apex:form>

<apex:dataTable value="{!products}" var="pitem" rowClasses="odd,even">
<apex:column headerValue="Product">

<apex:outputText value="{!pitem.name}"/>
</apex:column>
<apex:column headerValue="Inventory">

<apex:outputField value="{!pitem.Quantity__c}">
<apex:inlineEditSupport event="ondblclick" showOnEdit="update"/>

</apex:outputField>
</apex:column>

</apex:dataTable>

<apex:commandButton id="update" action="{!quicksave}" value="Update Counts"
styleclass="updateButton"/>

</apex:form>
</apex:page>

6. Save. The page now displays the inventory count table with two columns. Notice that the Update Counts button is hidden initially.

7. Double-click any cell in the inventory column. The field dynamically becomes an input field and the Update Counts button appears.

8. Modify the count value and click Update Counts to commit this update.

Tell Me More....
• The event attribute of the inlineEditSupport component is set to "ondblclick", which is a DOM event and means that

the output field will be made editable when you double-click it. Also, the showOnEdit attribute causes the Update Counts button
to appear on the page during an inline edit. This attribute is set to the ID of the Update Counts button.

• The Update Counts button is hidden through its style specification in the static resource file styles.css. The styleclass
attribute on commandButton links this button to an entry in styles.css.

132

Step 6: Add Inline Editing SupportBuild a Custom User Interface with Visualforce

Summary
Congratulations! You have created a new interface for your Warehouse app by creating a Visualforce page that uses a standard controller.
Your page is highly configurable. For example, you can easily modify which data is displayed in each row by modifying the column
components. The page also makes use of a lot of functionality provided by the standard controller behind the scenes. For example, the
controller automatically queries the database and finds all merchandise records and assigns them to the products variable. It also
provides a way of saving records, through its quicksave method.

133

SummaryBuild a Custom User Interface with Visualforce

	About the Workbook
	Audience
	Version
	Supported Browsers
	Can I Use My Tablet or Phone?
	Sign Up for Developer Edition
	Optional: Install the Warehouse App

	Create an App and Database
	Create a Warehouse App
	Step 1: Build a Cloud App and Database
	Step 2: Try Out the App
	Step 3: Explore the App

	Access the App from a Mobile Device
	Step 1: Set Up Mobile Access
	Step 2: Try Out the Mobile App
	Step 3: Explore the Mobile App

	Add Fields to an Object
	Step 1: Add the Price Field to the Merchandise Object
	Step 2: Add the Quantity Field to the Merchandise Object
	Step 3: Try Out the App

	Create a New Object
	Step 1: Create the Invoice Object Using the Wizard
	Step 2: Add an Invoice Tab to the App
	Step 3: Reorder Tabs in the App
	Step 4: Add a Status Field to the Invoice Object
	Step 5: Try Out the App

	Relate Objects
	Step 1: Create the Line Item Object
	Step 2: Add a Quantity Field
	Step 3: Relate Line Items to Invoice
	Step 4: Look Up Merchandise Items
	Step 5: Try Out the App
	Step 6: View the Schema
	Summary

	Load Data Using the Custom Object Import Wizard
	Step 1: Create the Data File
	Step 2: Load the Data
	Step 3: Try Out the App

	Customize a User Interface
	Create Views of Data
	Step 1: View a List of Invoices
	Step 2: Create a New View
	Step 3: Try Out the App

	Modify a Page Layout
	Step 1: Open the Page Layout Editor
	Step 2: Understand a Page Layout
	Step 3: Rearrange Fields on a Page Layout
	Step 4: Add Fields to the Related List
	Step 5: Try Out the App
	Step 6: Edit a Mini Page Layout

	Customize a Layout for Mobile Access
	Step 1: Create a Page Layout for Mobile Users
	Step 2: Display Key Fields Using Compact Layouts
	Step 3: Add Mobile Cards to the Related Information Page

	Enable Social Collaboration
	Step 1: Examine the Merchandise Page Layout
	Step 2: Enable Collaboration on Invoices
	Step 3: Try Out the App
	Step 4: Enable Notifications for Mobile

	Add App Logic with Clicks, Not Code
	Automate a Field Update Using Workflow
	Step 1: Examine the Line Item Detail Page
	Step 2: Create a Unit Price Field
	Step 3: Automatically Populate the Unit Price Field
	Step 4: Update Total Inventory When an Order is Placed
	Step 5: Activate the Workflow Rule
	Step 6: Try Out the App

	Add a Formula Field
	Step 1: Calculate a Value for Each Line Item
	Step 2: Try Out the App

	Add a Roll-Up Summary Field
	Step 1: Calculate a Total With a Roll-Up Summary Field
	Step 2: Try Out the App

	Enforce a Business Rule
	Step 1: Understand the Business Rule
	Step 2: Create a Validation Rule
	Step 3: Try Out the App
	Step 4: Modify the Validation Rule
	Step 5: Try Out the New Rule

	Create an Approval Process
	Step 1: Create an Approval Process
	Step 2: Examine the Approval Process Detail Page
	Step 3: Modify Approval Process Actions
	Step 4: Activate the Approval Process
	Step 5: Try Out the App
	Step 6: Configure Approvals for Chatter and Salesforce1

	Create a Flow
	Step 1: Add Flow Variables
	Step 2: Add a Form Screen
	Step 3: Add a Record Create Element
	Step 4: Add a Record Update Element
	Step 5: Add a Confirmation Screen
	Step 6: Add a Custom Button
	Step 7: Try Out the App
	Step 8: Add a Fault Screen

	Analyze Data with Reports and Dashboards
	Create a Report
	Step 1: Create a Simple Report
	Step 2: Get More Information Out of Your Report
	Step 3: Add Buckets to Your Report
	Step 4: Show Your Report Data as a Chart
	Step 5: Embed the Report Chart in a Record Page

	Create a Dashboard
	Step 1: Create a New Dashboard
	Step 2: Add a Pie Chart Component
	Step 3: Try Out the App
	Step 4: Access Dashboards from Your Mobile App

	Unleash Your Reports with the Salesforce Reports and Dashboards REST API
	Step 1: Run a Report Synchronously
	Step 2: Run a Report Asynchronously
	Step 3: Filter Report Data
	Step 4: Find, Show, and Refresh Dashboards

	Enhance the Mobile Experience with Actions
	Quickly Create Records Using Global Actions
	Step 1: Create a Global Action
	Step 2: Customize the Global Layout

	Create Related Records with Object-specific Actions
	Step 1: Define an Object-Specific Action
	Step 2: Choose Fields and Predefine Field Values
	Step 3: Customize an Object-Specific Layout

	Secure Your System
	Create a Profile and Permission Set
	Step 1: Create a Profile
	Step 2: Edit a Profile
	Step 3: Create the Manager Permission Set
	Step 4: Create the Salesperson Permission Set

	Create New Users
	Step 1: Create New Users
	Step 2: Test Record Access
	Step 3: Assign Permission Sets to Users
	Step 4: Test Record Access

	Configure Org-Wide Defaults
	Step 1: Modify the OWD for Invoices
	Step 2: Test Record Access

	Share Records Using a Role Hierarchy
	Step 1: Create a Role Hierarchy
	Step 2: Assign Users to Roles
	Step 3: Test Record Access

	Code Custom App Logic
	Explore the Developer Console and Apex
	Step 1: Start the Developer Console
	Step 2: Execute Basic Apex Code
	Step 3: Review the Execution Log

	Create an Apex Class and Method
	Step 1: Create an Apex Class
	Step 2: Create a Blueprint Class Method
	Step 3: Get an Invoice and its Line Items
	Step 4: Create the Final Version of the Class Method
	Step 5: Manually Test the Apex Class Method

	Call an Apex Class Method Using a Button
	Step 1: Create a Custom Button
	Step 2: Add the Button to the Page Layout
	Step 3: Modify the Apex Class
	Step 4: Test the New Button

	Create a Database Trigger
	Step 1: Create a Database Trigger
	Step 2: Manually Test the Trigger

	Create Unit Tests
	Step 1: Create a Unit Test
	Step 2: Run Unit Tests

	Build a Custom User Interface with Visualforce
	Code a Custom User Interface
	Step 1: Enable Visualforce Development Mode
	Step 2: Create a Visualforce Page
	Step 3: Add a Stylesheet Static Resource
	Step 4: Add a Controller to the Page
	Step 5: Display the Inventory Count Sheet as a Visualforce Page
	Step 6: Add Inline Editing Support
	Summary

